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Abstract

This paper investigates how competition to publish first and thereby establish priority im-
pacts the quality of scientific research. We begin by developing a model where scientists decide
whether and how long to work on a given project. When deciding how long to let their projects
mature, scientists trade off the marginal benefit of higher quality research against the marginal
risk of being preempted. The most important (highest potential) projects are the most com-
petitive because they induce the most entry. Therefore, the model predicts these projects are
also the most rushed and lowest quality. We test the predictions of this model in the field of
structural biology using data from the Protein Data Bank (PDB), a repository for structures of
large macromolecules. An important feature of the PDB is that it assigns objective measures
of scientific quality to each structure. As suggested by the model, we find that structures with
higher ex-ante potential generate more competition, are completed faster, and are lower qual-
ity. Consistent with the model, and with a causal interpretation of our empirical results, these
relationships are mitigated when we focus on structures deposited by scientists who – by nature
of their employment position – are less focused on publication and priority.
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1 Introduction

Credit for new ideas is the primary currency of scientific careers. Credit allows scientists to build
reputations, which translate to grant funding, promotion, and prizes (Tuckman and Leahey, 1975;
Diamond, 1986; Stephan, 1996). As described by Merton (1957), credit comes — at least in part
— from disclosing one’s findings first, thereby establishing priority. It is not surprising, then, that
scientists compete intensely to publish important findings first. Indeed, scientific history has been
punctuated with cutthroat races and fierce disputes over priority (Merton, 1961; Bikard, 2020).1

This competition and fear of pre-emption or “getting scooped” is not uniquely felt by famous sci-
entists, but rather permeates the field. Older survey evidence from Hagstrom (1974) suggests that
nearly two thirds of scientists have been scooped at least once in their careers, and a third of sci-
entists reported being moderately to very concerned about being scooped in their current work.
Newer survey evidence focusing on experimental biologists (Hong and Walsh, 2009) and structural
biologists more specifically (Hill and Stein, 2020) suggests that pre-emption remains common, and
that the threat of pre-emption continues to be perceived as a serious concern.

Competition for priority has potential benefits and costs for science. Pressure to establish prior-
ity can hasten the pace of discovery and incentivize timely disclosure (Dasgupta and David, 1994).
However, competition may also have a dark side. For years, scientists have voiced concerns that
the pressure to publish quickly and preempt competitors may lead to “quick and dirty experiments”
rather than “careful, methodical work” (Yong, 2018; Anderson et al., 2007). As early as the nine-
teenth century, Darwin lamented the norm of naming a species after its first discoverer, since this put
“a premium on hasty and careless work” and rewarded “species-mongers” for “miserably describ[ing]
a species in two or three words” (Darwin, 1887; Merton, 1957). More recently, journal editors have
bemoaned what they view as increased sloppiness in science: “missing references; incorrect controls;
undeclared cosmetic adjustments to figures; duplications; reserve figures and dummy text included;
inaccurate and incomplete methods; and improper use of statistics” (Nature Editors, 2012). In
other words, the faster pace of science has a cost: lower quality science. The goal of this paper is to
consider the impact of competition on the quality of scientific work. We use data from the field of
structural biology to empirically document that more competitive projects are executed with poorer
quality. A variety of evidence supports a causal interpretation of competition leading researchers
to rush to publication, as opposed to other omitted factors.

Economists have long studied innovation races, often in the context of patent or commercial R&D
races. There is a large theoretical literature which considers the strategic interaction between two
teams racing to innovate. These models have varied and often contradictory conclusions, depending
on how the innovative process is modeled. For example, in models where innovation is characterized

1To name but a few examples: Isaac Newton and Gottfried Leibniz famously sparred over who should get credit
as the inventor of calculus. Charles Darwin was distraught upon receiving a manuscript from Alfred Wallace, which
bore an uncanny resemblance to Darwin’s (yet unpublished) On the Origin of Species (Darwin, 1887). More recently,
Robert Gallo and Luc Montagnier fought bitterly and publicly over who first discovered the HIV virus. The dispute
was so acrimonious (and the research topic so important) that two national governments had to step in to broker a
peace (Altman, 1987).
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as a single, stochastic step, scientists will compete vigorously (Loury, 1979; Lee andWilde, 1980). By
contrast, if innovation is a step-by-step process, where experience matters and progress is observable,
then the strategic behavior may be more nuanced (Fudenberg et al., 1983; Harris and Vickers, 1985,
1987; Aghion et al., 2001).2 However, a common feature of these models is that innovation is binary:
the team either succeeds or fails to invent. There is no notion that the invention may vary in its
quality, depending on how much time or effort was spent. There are a few exceptions to this rule:
Hopenhayn and Squintani (2016) and Bobtcheff et al. (2017) explicitly model the tension between
letting a project mature longer (thereby improving its quality) versus patenting or publishing quickly
(reducing the probability of being preempted). Tiokhin et al. (2020) develop a model of a similar
spirit, where researchers choose a specific dimension of quality — the sample size. Studies with
larger sample sizes take longer to complete, and so more competition leads to smaller sample sizes
and less reliable science. Tiokhin and Derex (2019) test this line of thinking in a lab experiment.

Along these same lines, we develop a model of how competition spurred by priority races impacts
the quality of scientific research. In our model, there is a deterministic relationship between the time
a scientist spends on a project and the project’s ultimate scientific quality. The scientist will choose
how long to work on a given project with this relationship in mind. However, multiple scientists may
be working on any given project. Therefore, there is always a latent threat of being pre-empted.
The scientist who finishes and publishes the project first receives more credit and acclaim than the
scientist who finishes second. This implies that a scientist deciding how long to work on her project
must trade off the returns to continued “polishing” against the threat of potentially being scooped.
As a result, the threat of competition leads to lower quality projects than if the scientist know she
was working in isolation.

However, in a departure from the other models cited above, we embed this framework in a model
where project entry is endogenous. This entry margin is important, because we allow for projects
to vary in their ex-ante potential. To understand what we mean by “potential,” consider that some
projects solve long-standing open questions or have important applications for subsequent research.
A scientist who completes one of these projects can expect professional acclaim, and these are the
projects we consider “high-potential.” Scientists observe this ex-ante project potential, and use
this information to decide how much they are willing to invest in hopes of successfully starting the
project. This investment decision is how we operationalize endogenous project entry. High-potential
projects are more attractive, because they offer higher payoffs. As a result, researchers invest more
trying to enter these projects. Therefore, the high-potential projects are more competitive, which
in turn leads scientists to prematurely publish their findings. Thus, the key prediction of the model
is that high-potential projects — those tackling questions that the scientific community has deemed
the most important — are the projects that will also be executed with the lowest quality.

While the model provides a helpful framework, the primary contribution of this paper is to
provide empirical support for the its claims. The idea that competition may lead to lower quality

2This literature has been primarily theoretical, though there are a few exceptions. Cockburn and Henderson
(1994) study strategic behavior in drug development. Lerner (1997) studies strategic interaction between leaders and
followers in the disk drive industry.
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work is intuitive, and many scientists and journalists have speculated that this is the case (Fang
and Casadevall, 2015; Vale and Hyman, 2016; Yong, 2018). However, systematically measuring the
quality of scientific work is difficult. Consider the field of economics, for example — even with
significant expertise, it is difficult to imagine “scoring” papers based on their quality of execution in
a consistent, objective manner. Moreover, doing so at scale is infeasible.3

We make progress on the challenge of measuring scientific quality in the field of structural biology
by using a unique data source called the Protein Data Bank (PDB). The PDB is a repository for
structural coordinates of biological macromolecules (primarily proteins). The data are contributed
by the worldwide research community, and then centralized and curated by the PDB. Importantly,
every macromolecular structure is scored on a variety of quality metrics. At a high level, structural
biologists are concerned with fitting three-dimensional structure models to experimental data, and
so these quality metrics are measures of goodness of fit. They allow us to compare quality across
different projects in an objective, science-based manner. To give an example of one of our quality
metrics, consider refinement resolution, which measures the distance between crystal lattice planes.
Nothing about this measure is subjective, nor can it be manipulated by the researcher.4 Figure
1 shows the same protein structure solved at different refinement resolutions, to illustrate what a
higher quality protein structure looks like.

The rich data in the PDB also allow us to construct additional variables necessary to test our
model. The PDB groups identical proteins together into “similarity clusters” — proteins within
the same cluster are identical or near-identical. By counting the number of deposits in a similarity
cluster within a window of time after the first deposit, we can proxy for the competition researchers
solving that structure likely faced. If we see multiple deposits of the same structure uploaded to the
PDB in short succession, then researchers were likely engaged in a competitive race to deposit and
publish first. Moreover, the PDB includes detailed timelines for most structures. In particular, they
note the collection date (the date the researcher collected her experimental data) and the deposition
date (roughly the date the researcher finished her manuscript). The difference in these two dates
approximates the maturation period in the model.

The PDB has no obvious analog to project importance or potential, which is a pivotal variable
in our model. Therefore, we use the rich meta-data in the PDB to construct our own measure.
Rather than use ex-post citations from the linked publications as our measure of ex-ante potential
(which might conflate potential with the ex-post quality of the work), we leverage the extensive
structure-level covariates in the PDB to instead predict citations. These covariates include detailed
characteristics of the protein known to the scientist before she begins working on the structure,
such as the protein type, the protein’s organism, the gene-protein linkage, and the prior number of
papers written about the protein. Because the number of covariates is large relative to the number

3Some studies (Hengel, 2018) have used text analysis to measure a paper’s readability as a proxy for paper quality,
but such writing-based metrics fail to measure the underlying scientific content. Another strategy might be to use
citations, but this fails to disentangle the quality of the project from the importance of the topic or the prominence
of the author (Azoulay et al., 2013).

4Though of course researchers can “target” certain quality measures, in an attempt to reach a certain threshold.
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of observations, overfitting is a concern. To avoid this, we implement Least Absolute Shrinkage and
Selection Operator (LASSO) to select our covariates, and then impute the predicted values.

We use our computed values of potential to test the key predictions of the model. Comparing
structures in the 90th versus 10th percentile of the potential distribution, we find that high-potential
projects induce meaningfully more competition, with about 30 percent more deposits in their simi-
larity cluster. This suggests that researchers are behaving rationally by pursuing the most important
(and highest citation-generating) structures. We then look at how potential impacts maturation
and quality. We find that high-potential structures are completed about two months faster, and
have quality measures that are about 0.7 standard deviations lower than low-potential structures.
These results echo recent findings by a pair of structural biologists (Brown and Ramaswamy, 2007),
who show that structures published in top general interest journals tend to be of lower quality than
structures published in less prominent field journals.

However, a concern when interpreting these results is that competition and potential might be
correlated with omitted factors that are also correlated with quality. In particular, we are concerned
about complexity as an omitted variable — if competitive or high-potential structures are also more
difficult to solve, our results may be biased. We take several approaches to address this concern.
First, we investigate how long scientists spend working on their projects. If competitive and high-
potential projects are more complex, we would expect researchers to spend longer on these projects
in the absence of competition. However, we find the exact opposite: researchers spend less time on
more competitive and higher potential projects. This suggests that complexity alone cannot explain
our results, and that racing concerns must be at play. We also attempt to control for complexity
directly. This has a minimal effect on the magnitude of our estimates.

To further probe this concern, we leverage another source of variation – namely, whether the
protein was deposited by a structural genomics group. The majority of PDB structures are deposited
by university- or industry-based scientists, both of which face the types of incentives we have
described to publish early and obtain priority. In contrast, structural genomics (SG) researchers are
federally-funded scientists with a mission to deposit a variety of structures, with the goal of obtaining
better coverage of the protein-folding space and make future structure discovery easier. Qualitative
evidence suggests these groups are less focused on publication and priority, which is consistent with
the fact that only about 20 percent of SG structures ever appear in journal publications, compared
to over 80 percent of non-SG structures.

Because the SG groups are less motivated by competition, we can contrast the relationships
between potential and quality for SG structures versus non-SG structures. If complexity is correlated
with potential, then this should be the case for both the SG and non-SG structures. Intuitively,
by comparing the slopes across both groups, we thus “net out” the potential omitted variables
bias. Consistent with competition acting as the causal channel, we find more negative relationships
potential and quality among non-SG (i.e., more competitive) structures.

The fact that the most scientifically important structures are also the lowest quality intuitively
seems suboptimal from a social welfare perspective. If project potential and project quality are
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complements (as we assume in the model), then a lack of quality among high-potential projects
is particularly costly from a welfare perspective. Indeed, relative to a first-best scenario in which
a social planner could dictate both investment and maturation to each researcher, the negative
relationship between potential and quality does imply a welfare loss.

However, the monitoring and coordination costs make this type of scheme unrealistic from a
policy perspective. Instead, we consider a different policy lever: allowing the social planner to
dictate the division of credit between the first- and second-place teams. We consider this policy
response in part because some journals have recently enacted “scoop protection” policies5 explicitly
aimed at increasing the share of credit awarded to teams who lose priority races. We then ask:
with this single policy lever, can the social planner jointly achieve the optimal level of investment
and maturation? Our model suggests no. While making priority rewards more equal does increase
maturation periods toward the socially optimal level, it simultaneously may reduce investment
levels. If the social planner values the project more than the individual researcher (consistent with
the notion of research generating positive spillovers), then this reduced investment may be costly
from a social welfare perspective. The optimal choice of how to allocate credit depends on the
balance of these two forces, but ultimately may lead to a credit split that is lopsided. This in turn
will lead to the observed negative relationship between potential and quality. Therefore, while this
negative relationship tells us we are not at an unconstrained first-best, it cannot rule out that we
are at a constrained second-best.

The remainder of this paper proceeds as follows. Section 2 presents the model. Section 3
describes our setting and data. Section 4 tests the predictions of the model, and Section 5 considers
the welfare and policy implications. Section 6 concludes.

2 A Model of Competition and Quality in Scientific Research

The idea that competition for priority drives researchers to rush and cut corners in their work is
intuitive. Our goal in this section is to develop a model that formalizes this intuition, and that
generates additional testable predictions. Scientists in our model are rational agents, seeking to
maximize the total credit or recognition they receive for their work. This is consistent with views
put forth by Merton (1957) and Stephan (2012), though it stands in contrast with the idea that
scientists are purely motivated by the intrinsic satisfaction derived from “puzzle-solving” (Hagstrom,
1965).

The model has two stages. In the first stage, a scientist decides how much effort to invest in
starting the project. More investment at this stage translates to a higher probability of successfully
starting the project. We call this the entry decision. When making this decision, a scientist will
take into account each project’s potential payoffs, and weigh these against the costs of investing.
In the second stage, the scientist then decides how long to let the project mature. The choice of

5These policies ask reviewers to treat recently scooped papers as if they are novel contributions; see Section 5.2.2
for more detail and examples.
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project maturation involves a tradeoff between higher project quality and an increasing probability
of getting scooped.

We begin by solving the second-stage problem. In equilibrium, the researcher will know the
probability that her competitor has entered the race, and she will have some prior on whether she
is ahead of or behind her competitor. She will use these pieces of information to trade off marginal
quality gains against the threat of pre-emption. The threat of competition will drive her to complete
her work more quickly than if there were no competition (or if she were naïve to this threat). This
provides us with our intuitive result that competition leads to lower scientific quality.

In the first stage, the researcher decides how much to invest in an effort to start the project,
taking second-stage decisions as given. Projects have heterogenous payoffs, with important projects
yielding more recognition than incremental projects. Scientists factor these payoffs into their in-
vestment decision. Therefore, the model generates predictions about which projects are the most
competitive (i.e., induce the most entry) and thus the lowest quality. Because the highest expected
payoff (i.e., the most important or “highest potential”) projects offer the largest rewards, it is exactly
these projects that our model predicts will have the most entry, competition, and rushing. This
leads to the key insight from our model: the most ex-ante important projects are executed with the
lowest quality ex-post. In the following sections, we formalize the intuition laid out above.

2.1 Preliminaries

Players. There are two symmetric scientists, i and j. Throughout, i will index an arbitrary
scientist and j will index her competitor. Both scientists are working on the same project and only
receive credit for their work once they have disclosed their findings through publication.

Timing, Investment, and Maturation. Time is continuous and indexed by t. From the per-
spective of each scientist, the model consists of two stages. In the first stage, scientist i has an
idea. We denote the moment the idea arrives as the start time, or tSi . However, the scientist must
pay an upfront cost in order to pursue the idea. At tSi , scientist i must decide how much to invest
in starting the project. If she invests Ii, she has probability g (Ii) ∈ [0, 1] of successfully starting
the project, where g(·) is an increasing, concave function and the Inada conditions hold. These
assumptions reflect that more investment results in a higher probability of successfully entering a
project, but that the returns are diminishing. I could be resources spent writing a grant proposal or
trying to generate preliminary results. In our setting, a natural interpretation is that I represents
the time and resources spent trying to grow a protein crystal.6

The second stage occurs if the scientist successfully starts the project. Then, she must decide
how long to work on the project before publicly disclosing her findings. Let mi denote the time she
spends on the project, or the “maturation period.” The project is then complete at tFi = tSi +mi.

6Indeed, the laborious process of growing protein crystals is almost universally a prerequisite for receiving a grant;
the NIH typically to takes a “no crystals, no grant” stance on funding projects in structural biology (Lattman, 1996).
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Payoffs and Credit Sharing. Projects vary in their ex-ante potential, which we denote P . For
example, an unsolved protein structure may be relevant for drug development, and therefore a
successful structure determination would be published in a top journal and be highly cited. We call
this a “high-potential” protein or project.

Projects also vary in their ex-post quality, depending on how well they are executed. Quality is a
deterministic function of the maturation period, which we denote Q(m). Q is an increasing, concave
function and the Inada conditions hold. Without loss of generality, we impose that limm→∞Q(m) =

1. This facilitates the interpretation of quality as the share of the project’s total potential that the
researcher achieved. Then the total value of the project is the product of potential and quality.

The first team to finish a project receives a larger professional benefit (through publication,
recognition, and citations) than the second team. To operationalize this idea as generally as possible,
we say that the first team receives a reward equal to θ times the project’s value (through publication,
recognition, and citations). The second team receives a smaller benefit, equal to θ times the project’s
value. If r denotes the discount rate, then the present-discounted value of the project to the first-
place finisher is given by:

θe−rmPQ(m). (1)

Similarly, the present-discounted value of the project to the second-place finisher is given by:

θe−rmPQ(m). (2)

We make no restrictions on these weights, other than to specify that they are both positive and
θ ≥ θ. Importantly, we do not assume that the race is winner-take-all (i.e., θ = 0), as is common
in the theoretical patent and priority race literature (for example, Loury (1979); Fudenberg et al.
(1983); Bobtcheff et al. (2017)). Rather, consistent with empirical work on priority races (Hill and
Stein, 2020) and anecdotal evidence (Ramakrishnan, 2018), we allow for the second-place team to
share some of the credit.

Information Structure. The competing scientists have limited information about their competi-
tor’s progress in the race. Scientist i does not observe Ij , and so she doesn’t know the probability
her opponent enters, although she will have correct beliefs about this probability in equilibrium. In
addition, she does not know her competitor’s start time tSj . All she knows is that it is uniformly
distributed around her own start time. In other words, she believes that tSj ∼ Unif

[
tSi −∆, tSi + ∆

]
for some ∆ > 0. Figure 2 summarizes the model setup.

2.2 Maturation

We begin by solving the second stage problem of the optimal maturation delay, taking the first stage
investment as given. In other words, we explore what the scientist does once she has successfully
entered the project, and all her investment costs are already sunk. Our setup is similar to the
approach of Bobtcheff et al. (2017), but an important distinction is that we only allow the project’s
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value to depend on the maturation time m, and not on calendar time t. This simplifies the second
stage problem, and allows us to embed the solution into the first stage investment decision in a
more tractable way.

2.2.1 The No Competition Benchmark

We start by solving for the optimal maturation period of a scientist who knows that she is not
competing for priority. Alternatively, we could consider this the behavior of a naive scientist, who
does not recognize the risk of being scooped. This will serve as a useful benchmark once we re-
introduce the possibility of competition.

Without competition, the scientist simply trades off the marginal benefit of further maturation
against the marginal cost of time discounting. The optimal maturation delay mNC∗

i is given by

mNC∗
i ∈ arg max

mi

{
e−rmiPQ (mi)

}
. (3)

Taking the first-order condition and re-arranging (dropping the i subscripts for convenience) yields

Q′
(
mNC∗

)
Q (mNC∗)

= r. (4)

In other words, the scientist will stop work on the project and publish the paper when the rate of
improvement equals the discount rate.

2.2.2 Adding Competition

We continue to study the problem of the scientist who has already entered the project and already
sunk the investment cost. However, now we allow for the possibility of a competitor. We call
the solution to this problem the optimal maturation period with competition, and denote it mC∗

i .
Scientist i believes that her competitor has also entered the project with some probability g(IC

∗
j ),

where IC∗j is j’s equilibrium first-stage investment. However, because investment is sunk in the
first stage, we can treat g(IC

∗
j ) as a parameter (simply g) in this part of the model to simplify the

notation.
While scientist i knows the probability that j entered the project, she does not know her potential

competitor’s start time, tSj . As described above, her prior is that tSj is uniformly distributed around
her own start time. Let π (mi,mj) denote the probability that scientist i wins the race, conditional
on successfully entering. This can be written as

π(mi,mj) = (1− g) + gPr(tFi < tFj ) = (1− g) + gPr(tSi +mi < tSj +mj). (5)

The first term represents the probability that j fails to enter (and so i wins for sure), and the second
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term is the probability that j enters, but i finishes first. The optimal maturation period is given by

mC∗
i ∈ arg max

mi

{
e−rmiPQ (mi)

[
π(mi,mj)θ + (1− π(mi,mj)) θ

]}
. (6)

The term outside the square brackets represents the full present discounted value of the project.
The terms inside the brackets denote i’s expected share of the credit, conditional on i successfully
starting the project. The product of these two terms is scientist i’s expected payoff conditional on
successfully starting the project. Taking the first-order condition of Equation 6 implicitly defines
scientist i’s best-response function, which depends on mj and other parameters:

Q′
(
mC∗
i

)
Q
(
mC∗
i

) = r +
1

∆
(

2θ−g(θ−θ)
g(θ−θ)

)
+mj −mC∗

i

. (7)

If we look for a symmetric equilibrium, this yields Proposition 1 below.

Proposition 1. Assume that first stage equilibrium investment is equal for both researchers, i.e.,
IC
∗

i = IC
∗

j = IC
∗. Further assume that ∆ is sufficiently large. Then in the second stage, there is a

unique symmetric pure strategy Nash equilibrium where mC∗
i = mC∗

j = mC∗ and mC∗ is implicitly
defined by

Q′
(
mC∗

)
Q (mC∗)

= r +
g(IC

∗
)(θ − θ)

∆
(
2θ − g(IC∗)(θ − θ)

) . (8)

Proof. See Appendix A.1.

Because Q(m) is increasing and concave, we know Q′/Q is a decreasing function. Therefore, by
comparing Equations 4 and 8, we can see that mNC > mC . In other words, competition leads to
shorter maturation periods. This shortening is exacerbated when the difference between θ and θ is
large (priority rewards are more lopsided), ∆ is small (competitors start the projects close together,
and so the “flow risk” of getting scooped is high), or when g is close to one (the entry of a competitor
is likely). On the other hand, if θ = θ (first and second place share the rewards evenly), ∆ → ∞
(competition is very diffuse, so the “flow risk” of getting scooped is low), or g = 0 (the competitor
doesn’t enter), then we recover the no competition benchmark.

2.3 Investment

In the first stage, scientist i decides how much she would like to invest in hopes of starting the
project. Let Ii denote this investment, and let g (Ii) be the probability she successfully enters the
project, where g is an increasing, concave function. With probability 1− g (Ii) she fails to enter the
project, and her payoff is zero. With probability g (Ii) she successfully enters the project, and begins
work at tSi . Once she enters, there are two ways she can win the priority race: first, if her competitor
fails to enter, she wins for sure. Second, if her competitor enters but she finishes first, she also wins.
In either case, she gets a payoff of θPQ

(
mC
i

)
. On the other hand, if her competitor enters and she
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loses, her payoff is θPQ
(
mC
i

)
. Putting these pieces together (noting that in equilibrium, if both i

and j enter, they are equally likely to win) and re-arranging, the optimal level of investment is

IC
∗

i ∈ arg max
Ii

{
g (Ii) e

−rmC∗i PQ
(
mC∗
i

)[
θ − 1

2
g (Ij)

(
θ − θ

)]
− Ii

}
. (9)

Taking the first-order condition of Equation 9 implicitly defines scientist i’s best-response function,
which depends on Ij , mC∗

i , and other parameters:

g′(IC
∗

i ) =
1

e−rm
C∗
i PQ

(
mC∗
i

) [
θ − 1

2g (Ij)
(
θ − θ

)] . (10)

If we look for a symmetric equilibrium, this yields Proposition 2 below.

Proposition 2. Assume that researchers are playing a symmetric pure strategy Nash equilibrium
when selecting m in the second stage. Then, in the first stage, there is a unique symmetric pure
strategy Nash equilibrium where ICi = ICj = IC and ICi is implicitly defined by

g′(IC
∗
) =

1

e−rmC
∗
PQ (mC∗)

[
θ − 1

2g (IC∗)
(
θ − θ

)] . (11)

Together with Proposition 1, this shows that there is a unique symmetric pure strategy Nash equilib-
rium for both investment and maturation.

Proof. See Appendix A.1.

Equations 11 and 8 together define the optimal investment level and maturation period for
scientists when entry into projects is endogenous. This allows us to prove three key results.

Proposition 3. Consider an exogenous increase in the probability of project entry, g. This corre-
sponds to an increase in competition, because it makes racing more likely. When projects become
more competitive, the maturation period becomes shorter and projects become lower quality. In other
words, dmC

∗

dg < 0 and dQ(mC
∗

)
dg < 0.

Proof. See Appendix A.1. Scientist i selects mC
i by considering the probability that her competitor

enters g(Ij). If this probability goes up, she will choose a shorter maturation period which results
in lower quality.

Proposition 4. Higher potential projects generate more investment and are therefore more com-
petitive. In other words, dIC

∗

dP > 0 and dg(IC
∗

)
dP > 0.

Proof. See Appendix A.1. Scientist i will invest more to enter a high-potential project. Her com-
petitor will do the same. In equilibrium, high-potential projects are more likely to result in priority
races.

Proposition 5. Higher potential projects are completed more quickly, and are therefore of lower
quality. In other words, dmC

∗

dP < 0 and dQ(mC
∗

)
dP < 0.
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Proof. This comes immediately from Propositions 3 and 4, by applying the chain rule.

3 Structural Biology and the Protein Data Bank

This section provides some scientific background on structural biology and describes our data. We
take particular care to explain how we map key variables from our model into measurable objects in
our data. Our empirical work focuses on structural biology precisely because there is such a clean
link between our theoretical model and our empirical setting. Section 3.1 provides an overview of the
field of structural biology, while sections 3.2 and 3.3 describe our datasets. Section 3.4 describes how
we construct our primary analysis sample and provides summary statistics. Appendix B provides
additional detail on our data sources and construction.

3.1 Structural Biology

Structural biology is the study of the three-dimensional structure of biological macromolecules,
including deoxyribonucleic acid (DNA), ribonucleic acids (RNA), and most commonly, proteins.
Understanding how macromolecules perform their functions inside of cells is one of the key themes
in molecular biology. Structural biologists shed light on these questions by determining the three-
dimensional arrangement of a protein’s atoms.

Proteins are composed of building blocks called amino acids. These amino acids are arranged
into a single chain, which folds up onto itself, creating a three-dimensional structure. While the
shape of these proteins is of great interest to researchers, the proteins themselves are too small
to observe directly under a microscope.7 Therefore, structural biologists use experimental data to
propose three-dimensional models of the protein shape to better understand biological function.

Structural biology has several unique features that make it amenable for our purposes (see
Section 3.1.1 below), but it is also an important field of science. Proteins contribute to nearly
every process inside the body, and understanding the shape and structure of proteins is critical to
understanding how they function. Moreover, many heritable diseases — such as sickle-cell anemia,
Alzheimer’s disease, and Huntington’s disease — are the direct result of protein mis-folding. Protein
structures also play a critical role in drug development and vaccine design (Westbrook and Burley,
2018). Protease inhibitors, a type of antiretroviral drug used to treat HIV, are one important
example of successful structure-based drug design (Wlodawer and Vondrasek, 1998). The rapid
discovery and deposition of the SARS-CoV-2 spike protein structure has proven to be a key input
in the ongoing development of COVID-19 vaccines and therapeutics (Wrapp et al., 2020). Over a
dozen Nobel prizes have been awarded for advances in the field (Martz et al., 2019).

7Recent developments in the field of cryo-electron microscopy now allow scientists to observe larger structures
directly (Bai et al., 2015). However, despite the recent growth in this technique, fewer than five percent of PDB
structures deposited since 2015 have used this method.
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3.1.1 Why Structural Biology?

Our empirical work focuses on the field of structural biology for several reasons. First, and most
importantly, structural biology has unique measures of objective project quality. Scientists in this
field work to solve the three-dimensional structure of known proteins, and there are several measures
of how precise and correct their solutions are. We will discuss these measures in the subsequent
sections, but we want to highlight the importance of this feature: it is difficult to imagine how one
might objectively rank the quality (distinct from the importance or relevance) of papers in other
fields, such as economics or mathematics. Our empirical work hinges on the fact that structural
biologists have developed unbiased, science-based measures of structure quality.

Second, we can measure competition and racing behavior using biological similarity measures
and project timelines. By comparing the amino acid sequences of different proteins, we can detect
when two proteins are similar or identical to one another. This allow us to find projects that focus
on similar proteins, while the timeline data allows us to determine if researchers were working on
these projects contemporaneously. Together, this allows us to determine which structures faced
heavy competition while the scientists were doing their research.

Third, the PDB contains rich descriptive data on each protein structure. For each structure, we
observe covariates like the detailed protein classification, the taxonomy / organism, and the associ-
ated gene. Together, these characteristics allow us to develop measures of the protein’s importance,
based purely on ex-ante characteristics — a topic we discuss in more detail in Section 4.1.

3.1.2 Solving Protein Structures Using X-Ray Crystallography

How do scientists solve protein structures? Understanding this process is important for interpreting
the various quality measures used in our analysis. We focus on proteins solved using a technique
called x-ray crystallography. The vast majority (89 percent) of structures are solved using this
method.

X-ray crystallography broadly consists of three steps (see Figure 3). Individual proteins are too
small to analyze or observe directly. Therefore, as a first step, the scientist must distill a concentrated
solution of the protein into orderly crystals. Growing these crystals is a slow and difficult process,
often described as “more art than science” (Rhodes, 2006) or at times simply “dumb luck” (Cudney,
1999). Success typically comes from trial and error, and a healthy dose of patience.8

Next, the scientist will bring her crystals to a synchrotron facility and subject the crystals to
x-ray beams. The crystal’s atom planes will diffract the x-rays, leading to a pattern of spots called
a “diffraction pattern.” Better (i.e., larger and more uniform) crystals yield superior diffraction

8As Cudney colorfully explains: “How many times have you purposely designed a crystallization experiment and
had it work the first time? Liar. Like you really sit down and say ‘I am going to use pH 6 buffer because the p1 of
my protein is just above 6 and I will use isopropanol to manipulate the dielectric constant of the bulk solvent, and
add a little BOG to mask the hydrophoic interactions between sample molecules, and a little glycerol to help stabilize
the sample, and [a] pinch of trimethylamine hydrochloride to perturb water structure, and finally add some tartate
to stabilize the salt bridges in my sample.’ Right...Finding the best crystallization conditions is a lot like looking for
your car keys; they’re always the last place you look” (Cudney, 1999).
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patterns and improved resolution. If the scientist is willing to spend more time improving her
crystals — by repeatedly tweaking the temperature or pH conditions, for example — she may be
rewarded with better experimental data.

Finally, the scientist will use these diffraction patterns to first build an electron density map,
and then an initial atomic model. Building the atomic model is an iterative process: the scientist
will compare simulated diffraction data from her model to her actual experimental data and adjust
the model until she is satisfied with the goodness of fit. This process is known as “refinement,” and
depending on the complexity of the structure can take an experienced crystallographer anywhere
from hours to weeks to complete. Refinement can be a “tedious” process (Strasser, 2019), and
involves “scrupulous commitment to the iterative improvement and interpretation of the electron
density maps” (Minor et al., 2016). Refinement is a back-and-forth process of trying to better fit
the proposed structural model to the experimental data, and the scientist has some discretion in
when she decides the final model is “good enough” (Brown and Ramaswamy, 2007). More time and
effort spent in this phase can translate to better-quality models.

3.2 The Protein Data Bank

Our primary data source is the Protein Data Bank (PDB). The PDB is a worldwide repository
of biological macromolecules, 95 percent of which are proteins.9 It was established in 1971 with
just seven entries, and today contains upwards of 150,000 structures. Since the late 1990s, the vast
majority of journals and funding agencies have required that scientists deposit their findings in the
PDB (Barinaga, 1989; Berman et al., 2000, 2016; Strasser, 2019). Therefore, the PDB represents
a near-universe of macromolecule structure discoveries. For more detail on both the history and
mechanics of depositing in the PDB, see Berman et al. (2000, 2016). Below, we describe the data
collected by the PDB. The primary unit of observation in the PDB is a structure, representing a
single protein. Most variables in our data are indexed at the structure level.10

3.2.1 Measuring Quality

The PDB provides a myriad of measures intended to assess quality. These quality measures were
developed by the X-Ray Validation Task of the PDB in 2008, in an effort to increase the overall
social value of the PDB (Read et al., 2011). Validation serves two purposes: it can detect large
structure errors, thereby increasing overall user confidence, and it makes the PDB more useful and
accessible for scientists who do not possess the specialized knowledge to critically evaluate structure
quality. Below, we describe the three measures that we use in our empirical analysis. We selected
these three because they are scientifically distinct and have good coverage in our data. We also
combine these three measures into a single quality index, described below. Together, these measures

9Because the vast majority of structures deposited to the PDB are proteins, we will use the terms “structure” and
“protein” interchangeably throughout this paper.

10Some structures are composed of multiple “entities,” and some variables are indexed at the entity level. We
discuss this in more detail in Appendix B.
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map exactly to Q in our model. Importantly, they score a project on its quality of execution, rather
than on its importance or relevance.

An important feature of these measures is that they are all either calculated or independently
validated by the PDB, leaving no scope for misreporting or manipulation by authors. Since 2013, the
PDB has required that x-ray structures undergo automatic validation reports prior to deposition.
These reports take the researcher’s proposed model and experimental data as inputs, and use a suite
of software programs to produce and validate various quality measures. In 2014, the PDB ran the
same validation reports retrospectively on all structures that were already in the PDB (Worldwide
Protein Data Bank, 2013), so we have full historical coverage for these quality measures. Appendix
Figure C.1 provides a snapshot from one of these reports.

Refinement resolution. Refinement resolution measures the smallest distance between crystal
lattice planes that can be detected in the diffraction pattern. It is somewhat analogous to resolution
in a photograph. Resolution is measured in angstroms (Å), which is a unit of length equal to 10−10

meters. Smaller resolution values are better, because they imply that the diffraction data is more
detailed. This in turn allows for better electron density maps, as shown in Figure 1. At resolutions
less than 1.5Å, individual atoms can be resolved and structures have almost no errors. At resolutions
greater than 4Å, individual atomic coordinates are meaningless and only secondary structures can
be determined. As described in Section 3.2.1, scientists can improve resolution by spending time
improving the quality of the protein crystals and by fine-tuning the experimental conditions during
x-ray exposure. In our main analysis, we will standardize refinement resolution so that the units
are in standard deviations and higher values represent better quality.

R-free. The R-free is one of several residual factors (i.e., R-factors) reported by the PDB. In
general, R-factors are a measure of agreement between a scientist’s structure model and experimental
data. Similar to resolution, lower values are better. An R-factor of zero means that the model fits
the experimental data perfectly; a random arrangement of atoms would give an R-factor of about
0.63. Two R-factors are worth discussing in more detail: R-work and R-free. When fitting a model,
the scientist will set aside about ten percent of the data for cross-validation. R-work measures the
goodness of fit in the non-cross-validation sample. R-free measures the goodness of fit in the cross-
validation sample. R-free is our preferred R-factor, because it is less likely to suffer from overfitting
(Goodsell, 2019; Brünger, 1992). Most crystallographers agree it is the most accurate measure of
model fit (Read et al., 2011).

While an R-free of zero is the theoretical best that the scientist could attain, in reality R-free
is constrained by the resolution. Structures with worse (i.e., higher) resolution have worse (i.e.,
higher) R-free values. As a rule of thumb, models with a resolution of 2Å or better should have an
R-free of (resolution/10 + 0.05) or better. In other words, if the resolution is 2Å, the R-free should
not exceed 0.25 (Martz and Hodis, 2013). A researcher who spends more time refining her model
can attain better R-free values. In our main analysis, we will standardize R-free so that the units
are in standard deviations and higher values represent better quality.

14



Ramachandran outliers. Ramachandran outliers are one form of outliers calculated by the PDB.
Protein chains tend to bond in certain ways (at specified angles, with atoms at specified distances,
etc.). Violations of these “rules” may be features of the protein, but typically they represent errors
in the model. At a high level, most outlier measures calculate the percent of amino acids that
are conformationally unrealistic. Ramachandran outliers (Ramachandran et al., 1963) focus on the
angles of the protein’s amino acid backbone, and flag instances where the bond angles are too small
or large. Again, in our main analysis, we will standardize Ramachandran outliers so that the units
are in standard deviations and higher values represent better quality.

Quality index. Finally, we combine the three measures above into a single quality index. All three
measures are correlated, with correlation coefficients in the 0.4 to 0.6 range (see Appendix Table
C.1). We create the index by adding all three standardized quality measures and then standardizing
the sum.

3.2.2 Measuring Maturation

We refer to the time the scientist spends working on a protein structure as the “maturation” period,
corresponding to m in our model. We are interested in whether competition reduces structure
quality via rushing, i.e., shortening the maturation period. In most scientific fields, it would be
impossible to measure the time researchers spend on each project, but the PDB metadata provides
unique insight about project timelines.

For most structures, the PDB collects two key dates which allow us to infer the maturation
period: the collection date and the deposition date. The collection date is self-reported and date
corresponds to the date that the scientist subjected her crystal to x-rays and collected her ex-
perimental data. The deposition date corresponds to the date that the scientist deposited (i.e.,
uploaded) her structure to the PDB. Because journals require evidence of deposition before publish-
ing articles, the deposition date corresponds roughly to when the scientist submitted her paper for
peer review.11 The timespan between these two dates represents the time it takes the scientist to
go from the raw diffraction data to a completed draft (the “diffraction pattern” stage to the “com-
pleted structure” stage in Figure 3). In other words, it is the time spent determining the protein’s
structure, refining the structure, and writing the paper. However, note that this maturation period
only includes time spent working on the structure once the protein was successfully crystallized and
taken to a synchrotron. Anecdotally, crystallizing the protein (the first step in Figure 3) can be
the most time-consuming step. Because we do not observe the date the scientist began attempting
to crystallize the protein, we cannot measure this part of the process. Therefore our maturation
variable does not capture the full interval of time spent working on a given project.

11Rules governing when a researcher must deposit her structure to the PDB have changed over time. However,
following an advocacy campaign by the PDB in 1998, the NIH as well as Nature and Science began requiring that
authors deposit their structures prior to publication (Campbell, 1998; Bloom, 1998; Strasser, 2019). Other journals
quickly followed suit. We code the maturation time as missing if the structure was deposited prior to 1999 to ensure
a clear interpretation of this variable.
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3.2.3 Measuring Investment

There is no clear way to measure the total resources that a researcher invests in starting a project
using data from the PDB. However, one scarce resource that scientists must decide how to allocate
across different projects is lab personnel. We can measure this, because every structure in the
PDB is assigned a set of “structure authors.” We take the number of structure authors as one
measure of resources invested in a given project. In addition, we can also count the number of
paper authors on structures with an associated publication. To understand the difference between
structure authors and paper authors, note that structure authors are restricted to authors who
directly contributed to solving the protein structure. Therefore, the number of structure authors
tends to be smaller than the number of paper authors on average (about five versus about seven in
our main analysis sample), because paper authors can contribute in other ways, such as by writing
the text or performing complementary analyses. Appendix Figure C.2 shows the histogram of the
difference between the number of paper authors and structure authors. While we view the number
of structure authors as a cleaner measure of investment, because these authors contributed directly
to solving the protein structure, we will use both in our analysis.

3.2.4 Measuring Competition

Our measure of competition leverages the fact that the PDB assigns each protein to a “similarity
cluster” based on the protein’s amino acid sequence. Two identical or near-identical proteins will
both belong to the same similarity cluster.12 Therefore, we are able to count the number of PDB
deposits within a similarity cluster, which gives some measure of the “crowdedness” or competition
for a given protein.

However, these deposits may not represent concurrent discoveries or races if they were deposited
long after the first structure was deposited. Therefore, we instead count the number of deposits
in the PDB that appear within the first two years of when the first structure was deposited. We
choose two years as our threshold, because the average maturation period is 1.75 years on average.
Therefore, we believe that structures deposited within two years of the first structure likely represent
concurrent work. This two year cutoff is admittedly ad hoc, and so we construct some alternative
competition measures and show in Appendix C that our results are not sensitive to this particular
cutoff.

This measure is meant to proxy for g, the equilibrium probability that a competitor has also
started the project. However, we cannot directly measure the ex-ante probability of competition, and
so instead we measure ex-post realized competition. This implies that our measure of competition
will be noisy estimate of g — the researcher’s perceived competition — which is the relevant variable
for dictating researcher decision-making and behavior. We flag this measurement issue because it

12More specifically, there are different “levels” of sequence similarity clusters. Two proteins belonging to the same
100 percent similarity cluster share 100 percent of their amino acids in an identical order. Two proteins belonging
to the same 90 percent similarity cluster share 90 percent of their amino acids in an identical order. We use the 100
percent cluster. For more detail, see Hill and Stein (2020).
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will lead to attenuation bias if this proxy is used as an independent variable in a regression.

3.2.5 Complexity Covariates

Proteins can be difficult to solve because (a) they are hard to crystallize, and (b) once crystallized,
they are hard to model. In general, predicting whether a protein will be easy or hard to crystallize
is a difficult task. Researchers have failed to discover obvious correlations between crystallization
conditions and protein structure or family (Chayen and Saridakis, 2008). Often, a single amino acid
can be the difference between a structure that forms nice, orderly crystals and one that evades all
crystallization efforts. However, as a general rule, larger and “floppier” proteins are more difficult
to crystallize than their smaller and more rigid counterparts (Rhodes, 2006). Moreover, since these
larger proteins are more complex, with more folds, they are harder to model once the experimental
data are in hand. Therefore, despite the general uncertainty of protein crystallization, size is a
predictor of difficulty.

The PDB contains several measures of structure size, which we use as covariates to control for
complexity. These include molecular weight (the structure’s weight), atom site count (the number
of atoms in the structure), and residue count (the number of amino acids the structure contains).
Because these variables are heavily right-skewed, we take their logs. We then include these three
variables and their squares as complexity controls.13

3.2.6 Other Descriptive Covariates

For each structure, the PDB includes detailed covariates describing the molecule. Some of these
covariates are related to structure classification — these include the macromolecule type (protein,
DNA, or RNA), the molecule’s classification (transport protein, viral protein, signaling protein,
etc.), the taxonomy (organism the structure comes from), and the gene that expresses the protein.
We use these detailed classification variables to estimate a protein’s scientific relevance, a topic
discussed in more detail in Section 4.1.

3.3 Other Data Sources

3.3.1 Web of Science

The Web of Science links over 70 million scientific publications to their respective citations.14 Our
version of these data start in 1990 and end in 2018. Broadly, we are able to link the Web of Science
citations data to the PDB using PubMed identifiers, which are unique IDs assigned to research

13A key exception to the discussion above is membrane proteins. Membrane proteins are embedded in the lipid
bilayer of cells. As a result, membrane proteins (unlike other proteins) are hydrophobic, meaning they are not
water-soluble. This makes them exceedingly difficult to purify and crystallize (Rhodes, 2006; Carpenter et al., 2008).
This has made membrane protein structures a rarity in the PDB — although membrane proteins comprise nearly 25
percent all proteins (and an even higher share of drug targets), they make up just 1.5 percent of PDB structures.
We drop membrane proteins from our sample, though their inclusion or exclusion do not meaningfully impact our
results.

14The Web of Science is owned by Clarivate Analytics since 2016.
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papers in the medical and life sciences by the United States National Library of Medicine. The
PDB manually links all structures to the published paper that “debuts” the structure, and includes
the PubMed ID in this linkage. The Web of Science includes a paper-PubMed ID crosswalk. This
allows us to link the Web of Science to the PDB.

We then use these linked data to compute citation counts for PDB linked papers. We com-
pute citations by counting citations in the three years following publication,15 and exclude any
self-citations.16 By restricting to citations in the three years since publication (rather than total
cumulative citations) we avoid the problem that older papers have had more time to accumulate
citations. Note that these citation variables are unique at the paper level, rather than at the struc-
ture level. Structures are linked to papers in a many-to-one fashion. In other words, while some
papers only have one affiliated structure, other papers may have multiple affiliated structures. We
discuss how we handle multiple matching of structures to a single paper in Section 3.4.

3.3.2 UniPROT Knowledgebase

The UniPROT Knowledgebase is a database of over 120 million proteins from all species and
branches of life (The UniProt Consortium, 2019). The PDB only contains entries for proteins
whose structures have been solved. Therefore, the UniPROT data represents a superset of proteins
found in the PDB. For each protein, the data contain the amino acid sequence, protein name, and
PubMed IDs for all of the academic papers that reference the protein. Importantly, each entry also
includes a PDB ID if the protein has an associated structure in the PDB. This allows us to link the
UniPROT data to the PDB.

Scientists often study and publish papers about proteins long before their structures are solved.
Therefore, we can count the number of papers that were published about a protein prior to the
protein’s structure publication. We view this as a measure of ex-ante demand for the protein’s
structure. In other words, if a protein is heavily studied before anyone has solved and released its
structure, there is probably more interest in the structure. We use this to help proxy for a protein’s
importance, a topic discussed in more detail in Section 4.1.

3.3.3 DrugBank

DrugBank is a comprehensive database containing information on both drugs, their mechanisms,
their interactions, and their protein targets. It is widely used by researchers, physicians, and
the drug industry (Wishart et al., 2018). The current release contains over 11,000 drugs, including
about 2,600 approved drugs (approved by the FDA, Health Canada, EMA, etc.), 6,000 experimental

15We only count citations that have been assigned a PubMed ID. Because structural biology falls squarely in the
medical and life sciences, this restriction has little impact.

16Following Wuchty et al. (2007), we define a self-citation as any citation citation where a common name exists in
the authorship of both the cited and the citing papers. Common names are defined as when the first initial and last
name match. This method can also eliminate citations where the authors are different people but share the same
name. However, Wuchty et al. (2007) perform Monte Carlo simulations on the data, and find that such errors occur
in less than 1 of every 2,000 citations. Thus, any errors introduced by this procedure appear negligible.
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(i.e., pre-clinical) drugs, and about 4,000 investigational drugs (in Phase I/II/III human trials).17

Importantly for us, beyond just linking to the target protein, DrugBank provides the PDB ID(s)
for any target structure that has been deposited in the PDB. This allows us to link structures to
the drugs that target them.

3.4 Sample Construction

We begin with the full sample of 128,876 PDB structures that were deposited and solved using x-ray
crystallography between 1971 and 2018. These structures are linked to 63,809 unique publications.
From here, we make a series of sample restrictions to construct our final analysis sample. Key
variables in our data are indexed at two distinct levels: the structure level and the paper level.
Therefore, we start by restricting to publications with just one structure. This leaves us with 35,625
structures linked to 35,625 papers (or “projects” in the case of structures without an associated
publication).18 The resulting data have a one-to-one mapping between a given paper and structure.
This restriction allows us to assign paper-level characteristics, such as expected citations, directly
to individual structure deposits in the PDB.

Because we are interested in the behavior of scientists who are potentially racing, we further
restrict our analysis sample to new structure discoveries. In other words, we drop PDB deposits
if a structure of the protein had previously been deposited. In practice, we use the similarity
clusters and only keep the first protein to be released in each cluster. This leaves us with 25,620
structures. Finally, we drop structures that are missing any of our three quality measures. We also
drop membrane proteins.19 This leaves us with a final sample of 21,951 structures.

Table 1 provides summary statistics for both the full sample and our analysis sample. Panel A
presents structure-level statistics and Panel B presents paper-level statistics. Although our analysis
sample comprises a small subset of the total structures, it appears fairly representative of the full
sample. There are a few exceptions to this claim. The maturation period (years between collection
and deposit) is shorter in the analysis sample, likely because we focus on the first deposit of a given
protein, and so racing is more likely. Competition (deposits per similarity cluster within two years)
is smaller in the analysis sample, but this occurs mechanically because we drop all deposits after the
first structure deposition.20 Similarly, the number of UniPROT papers (i.e., papers published prior
to the first structure discovery) is lower in the analysis sample because there are more UniPROT
papers for structures in crowded clusters. For more detail on the full distributions of our key
outcome variables, see the histograms in Appendix Figure C.4.

17Some drugs fall into more than one category.
18For structures without an associated publication, we attempt to predict whether the structure would have have

been the only structure in a paper had it been published. See Appendix B for details. Appendix Figure C.3 suggests
that we are able to correctly classify these structures the majority of the time.

19We drop membrane proteins because they are exceptionally difficult to purify and crystallize (Rhodes, 2006;
Carpenter et al., 2008). This exclusion only drops 357 structures and does not meaningfully impact our results.

20So in a cluster with 100 deposits we drop 99, while in a cluster with 2 deposits, we only drop 1. This will
mechanically lower the average number of deposits per cluster.
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4 Testing the Model: Empirical Strategy and Results

In this section, we test the predictions laid out by the model in Section 2. We start by focusing on
Propositions 4 and 5, which rely on cross-sectional variation in potential. Propositions 4 states that
high-potential projects should generate more investment and therefore more competition. Propo-
sition 5 states that high-potential projects should therefore be more rushed and lower quality. We
provide a variety of evidence which points to increased competition and rushing — rather than
other omitted factors — as the primary channel.

Finally, we return to Proposition 3, which states that more competitive projects (projects at
higher risk of having multiple teams competing simultaneously) are more likely to be rushed and
lower quality. We do not have a clean measure of ex-ante competition — as discussed in Section
3.2.4, we only measure ex-post realized competition. This noise will lead to attenuation bias in
our estimates. However, the model sets up a natural instrumental variables specification: we can
instrument for competition with project potential. Proposition 4 functions as the first stage, while
Proposition 5 is the reduced form.

4.1 Defining Project Potential

Before we can begin testing the model, we need to define an empirical analog to the project potential
variable in our model. Project potential captures the notion that ex-ante, some proteins are likely
to be heavily cited. Scientists are usually aware of which projects, if successfully completed, will
publish well and garner many citations, and this information guides their choices over which projects
to pursue. For example, the COVID-19 pandemic which began in 2019 spurred a sudden and large
interest in a particular virus and its associated proteins (Corum and Zimmer, 2020). The scientists
who successfully determined the structures of these key proteins were ex-ante likely to publish in the
top science journals and receive high levels of citations, acclaim, and publicity — indeed, the first
structure-paper pair to describe the structure of the SARS-CoV-2 viral spike protein has received
over 2,000 citations in the six months since publication (Wrapp et al., 2020; also see PDB ID 6VSB).
While not all important proteins are related to a specific disease, many other features of proteins
are predictive of the ex-ante demand for their structure.

While project potential is a key variable in our model, it cannot be observed directly in the
data. Therefore, we estimate it. We use the rich structure-level data in the PDB to predict which
proteins will be highly cited, based only on ex-ante characteristics of the protein. The predicted
citation value serves as our measure of potential, corresponding to P in the model.

This kind of prediction is possible due to extremely detailed data describing and categorizing
every structure in the PDB. Each structure is given a detailed classification (over 500 different clas-
sifications, such as “transcription protein” or “signaling protein”), a taxonomy (over 1,000 different
organisms, such “homo sapiens” (human) or “mus musculus” (mouse)), and a link to the gene which
codes for the protein (over 2,500 different genes). We also take advantage of the UniPROT prior
paper measure (described in Section 3.3.2) as an additional predictor. For each structure, we com-
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pute the number of citations that the associated publication accrued over the first three years since
publication (excluding self-citations). Since the citation counts are heavily right-skewed, we trans-
form these counts into percentiles. We then use these detailed data to predict citation percentiles
for each structure. It is worth pointing out that we explicitly exclude our complexity covariates
from this prediction, in an effort to create a measure of potential that is uncorrelated with project
complexity.

In this context, the number of predictors is large (over 4,000 variables) relative to the number of
observations. Therefore, to avoid overfitting, we implement Least Absolute Shrinkage and Selection
Operator (LASSO) to select predictors in a data-driven manner. LASSO regularization helps avoid
overfitting, but it also shrinks the fitted coefficients towards zero. To remove this bias, we re-
estimate an ordinary least squares regression using the LASSO-selected covariates (Belloni and
Chernozhukov, 2011). We then use the post-LASSO coefficients to generate predicted citations.

In our analysis sample of of 21,951 structures, 8,667 (about 40 percent) do not have a three-
year citation count. This happens because either the associated paper was published after 2015
(since our citation data only runs through 2018), or because the structure has no associated paper.
Rather than drop these observations, we use the LASSO coefficients to impute the predicted citation
percentiles, just as we do for the observations with non-missing citation counts.

Figure 4 compares actual versus predicted citation percentiles, to help assess the prediction
quality. Panel A shows a histogram of actual versus predicted percentiles. While the predicted values
are more clustered toward the middle percentiles, we are able to generate fairly good dispersion.
Panel B shows the binned scatterplot of actual percentiles on the y-axis versus predicted percentiles
on the x-axis. The fit along the y = x line appears quite good throughout the distribution. Taken
together, these figures suggest our prediction exercise is reasonably successful. Appendix Table
C.2 shows the LASSO-selected covariates and the post-LASSO ordinary least squares coefficients.
While many of the coefficients are difficult to interpret, it is reassuring to see some common-
sense coefficients — for example, proteins that had more prior papers written before the structure
discovery tend to be more highly cited. The R2 from the post-LASSO ordinary least squares
regression suggests that we are able to capture about 17 percent of the variation in actual citation
percentile with our predictions.

4.2 The Relationship between Potential and Competition

Proposition 4 predicts that scientists will invest more in starting high-potential projects, which will
generate more competition for completing these projects. We measure investment using the number
of structure authors and paper authors, as discussed in Section 3.2.3. We proxy for competition
by counting the number of times the structure was deposited in the PDB within two years of the
initial deposit, as discussed in Section 3.2.4. Because this variable is heavily right-skewed, we take
the log.

Figure 5 shows the relationship between investment and potential. We illustrate the relationship
using a binned scatterplot. To construct this binned scatterplot, we first residualize investment and

21



potential with respect to a set of deposition year indicators. We then divide the sample into 20
equal-sized groups based on the ventiles of the potential measure, and plot the mean of investment
against the mean of potential in each group. Finally, we add back the mean investment period
to make the scale easier to interpret after residualizing. As Figure 5 demonstrates, high-potential
projects have both more structure authors and more paper authors, suggesting that researchers
allocate more scarce personnel to more important projects. The highest-potential structures have
about 4.8 structure authors and 7.5 paper authors on average, while the lowest-potential structures
have about 4.5 structure authors and 6.3 paper authors on average.

Figure 6 is similar to Figure 5, but shows the relationship between potential and competition.
The highest-potential structures have about 1.5 deposits per similarity cluster,21 while the lowest-
potential structures have about 1.1 deposits in the similarity cluster.

Table 2 formalizes these relationships. For structure i deposited in year t, we estimate:

Yit = α+ βPit +X ′itγ + τt + εit (12)

where Y is our outcome of interest (either investment or competition), P is our measure of potential
(the predicted citation percentile), X is a vector of structure covariates, τ is a deposition year fixed
effect, and ε is the idiosyncratic error term. β is the coefficient of interest, because it describes the
relationship between potential and investment or potential and competition.

Panel A presents the estimates of β with deposition year fixed effects, which corresponds to the
plots shown in Figures 5 and 6. Throughout the remainder of this paper, we will find it convenient
to benchmark effect sizes by comparing structures in the 90th percentile of the potential distribution
(corresponding to structures predicted to fall in the 31st percentile of the citation distribution, as
shown in Panel A of Figure 4) to structures in the 10th percentile of the potential distribution
(corresponding to structures predicted to fall in the 63rd percentile of the citation distribution). We
will term these “high-potential structures” and “low-potential structures” respectively. Columns (1)
and (2) focus on the effect of potential on investment. The coefficient of 0.008 in column (1) implies
that high-potential structures have 0.25 more structure authors than low-potential structures.22

Similarly, column (2) implies that high-potential structures also have about one additional author
compared to low-potential structures. Both coefficients are statistically significant at the one percent
level.

Columns (3) turns to the effect of potential on competition. The coefficient of 0.009 in column
(3) suggests that high-potential structures have about 30 percent more deposits in their similarity
cluster than low-potential structures.23 Again, this effect is statistically significant at the one percent
level. Appendix Table C.3 provides similar estimates for alternative measures of competition.

Collectively, these results suggest that researchers are interested in maximizing their citations,
and rationally choose which projects to invest in and pursue with citations in mind. In other words,

21We arrive at this by noting that e0.4 = 1.5.
22We calculate this by taking 0.008× (63− 31) = 0.25.
23We calculate this by taking e0.009×(63−31) = 1.3.
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it does not appear that researchers simply choose topics they are interested in, with no regard for
the citations or acclaim their work will garner. This provides credibility for the setup of our model,
where we assume that researchers are behaving as strategic citation-maximizers.

4.3 The Relationship between Potential and Quality

In this section, we turn to the core predictions from our model. The first part of Proposition 5
predicts that high-potential projects will be completed more quickly, as scientists internalize the
fact that they are more likely to face competition for these projects. The second part of Proposition 5
predicts that this decrease in maturation will lead to lower quality among the high-potential projects.
Figure 7 shows the relationship between maturation and potential, controlling for deposition year.
The highest-potential projects have maturation periods of about 1.7 years, while the lowest-potential
projects have maturation periods of about 1.9 years — a difference of just over two months. Figure
8 illustrates the relationship between potential and quality. Across all four quality measures, we see
that higher potential is associated with lower quality. The magnitude of these correlations is notable.
In Panel A, for example, we see that the highest-potential projects have resolution measures that
are nearly a full standard deviation lower than the lowest-potential projects. These trends are fairly
consistent across the different quality measures.

Table 3 presents these relationships in regression form. We estimate the same regression as in
Equation 12, but replace the dependent variable Y with our measures of maturation and quality.
β remains the coefficient of interest, because it describes the relationship between potential and
maturation or potential and quality. Focusing on Panel A, column (1) shows that higher-potential
projects have shorter maturation periods. The coefficient of −0.005 implies that high-potential
structures are completed about 0.17 years (or just over two months) faster than low-potential
structures. Since the typical low-potential structure takes has a maturation period of about 1.9
years, this represents a decline of about nine percent. This effect is statistically significant at the
one percent level.24

Columns (2) to (5) of Table 3 measure the effect of potential on quality. Again looking at Panel
A and focusing on the aggregate quality index in column (5), the coefficient of −0.021 implies that
high-potential structures have quality index scores that are about 0.7 standard deviations below
their low-potential counterparts. The magnitudes are similar across the other quality measures in
columns (2) to (4), and all the coefficients are statistically significant at the one percent level.

Together, these results suggest that high-potential projects are more likely to be finished quickly,
which translates to lower quality on average. However, as discussed in Section 4.6, this negative
relationship could be driven by omitted variables bias. In this setting, we are particularly concerned
that high-potential structures are more complicated, and this complexity — not rushing — is what

24As discussed in Section 3.2.2, our measure of maturation is imperfect. For one, it measures elapsed time, but
not necessarily the hours spent working on any particular project. In addition, it only measures the time between
when the scientist collects her experimental data and when she submits a draft. It does not include the time spent
isolating and crystallizing the protein. Anecdotally, crystallization can be the most difficult and lengthly part of the
process. Therefore, the estimates above represent the shortening of a part of the project lifespan.
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drives the lower quality. This motivates our work in the following two sections.

4.4 Competition or Complexity?

Our model suggests that the negative relationship we document between potential and quality is
caused by scientists rushing. However, an alternative explanation is that high-potential proteins
might be more complex and therefore difficult to solve with high quality. If potential is positively
correlated with complexity, our results could suffer from omitted variables bias, which would bias
our estimate of β down.

In this and the following section, we will provide three distinct pieces of evidence which together
suggest that complexity alone cannot explain the negative relationship we observe. We start by
pointing out the negative relationship between potential and maturation shown in Figure 7. If
scientists are agnostic toward priority rewards, but high-potential structures are more complex,
then we would expect that scientists spend longer on these complex structures. In fact, we find
the exact opposite, as discussed in Section 4.3. Researchers spend less time on the high-potential
structures. This suggests that complexity alone cannot explain the negative relationship between
potential and quality.

In general, our estimates of β in Equation 12 will be biased if the conditional independence as-
sumption fails. In this context, the conditional independence assumption requires that our outcome
of interest (maturation or quality) is independent of potential, conditional on controls. Therefore,
our next strategy is to include controls for structure complexity, in an effort to achieve conditional
independence. These controls, which are outlined in Section 3.2.6, proxy for the size of the protein
structure. While it is generally difficult for researchers to anticipate which structures will be difficult
to solve, larger structures tend to be more challenging.

Panel B of Table 3 illustrates the effect of adding these complexity controls in Equation 12 when
quality is the dependent variable. To start, we note that these controls are powerful predictors of
project quality. The R2 dramatically increases in columns (2) through (5) with the inclusion of
these controls. For example, in column (5), the R2 increases by over a factor of three (going from
0.065 in Panel A to 0.215 in Panel B).

At the same time, the inclusion of these controls does not have a large effect on our estimated
coefficients. Comparing Panels A and B in Table 3, we observe that the coefficients remain stable.
For example, looking at our quality index outcome in column (5), we see that complexity controls
reduce the magnitude of our estimate by just ten percent. Across all four quality outcomes, the
coefficients remain negative and statistically significant at the one percent level.

Taken together with our maturation results, this suggests that scientific complexity is not the
main driver of the negative correlation between project potential and project quality. Rather, it
appears that competition and rushing play a significant role. However, in an effort to cleanly isolate
the effect of competition alone, we take advantage of the fact that different researchers face different
competitive incentives. This is the subject of the next section.
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4.5 Investigating Structural Genomics Groups

In this section, we contrast structures deposited by structural genomics (SG) groups and those
deposited by other researchers, in order to separate the effect of researcher rushing from other
omitted factors (in particular, project complexity). As we discuss below, researchers in SG groups
are less focused on competing for priority. Therefore, the optimization problem these researchers
face in selecting the maturation period is similar to the no competition benchmark of the model,
presented in Section 2.2.1. The model predicts that in this case, Proposition 5 should no longer hold.
In other words, without competitive incentives, we no longer expect to see a negative relationship
between potential and maturation or quality.25 Comparing the SG and non-SG structures is helpful,
because it allows us to “net out” potential omitted variables bias. Intuitively, if we are concerned
that the negative relationship between potential and quality is driven by structure complexity, that
concern likely applies to both the SG and non-SG samples. Therefore, the difference in slopes
between the two samples is not driven by complexity, but rather by differing levels of concern over
competition.

4.5.1 Background on Structural Genomics Consortia

We focus on structural genomics (SG) groups because we argue that researchers in these groups
face different competitive incentives than the typical academic lab. Since the early 2000s, SG
consortia around the world have focused their efforts on solving and depositing protein structures
in the PDB. Inspired by the success of the Human Genome Project, SG groups have a different
mission than university and private-sector labs. These groups focus on achieving comprehensive
coverage of the protein folding space, and eventually full coverage of the human “proteome,” the
catalog of all human proteins (Grabowski et al., 2016). Even without solving the structure of every
protein, SG groups have achieved broader coverage of the “protein folding space,” which has allowed
subsequent structures to be solved more easily. For a more complete history of these structural
genomics consortia, see Burley et al. 2008; Grabowski et al. 2016. All told, these initiatives have
produced nearly 15,000 PDB deposits.

Importantly for our purposes, SG groups are less focused on winning priority races than their
university counterparts. Indeed, the vast majority of structures solved by structural genomics groups
are never published, suggesting that researchers in these groups are focused on data dissemination
rather than priority. For example, The Structural Genomics Consortium (an SG center based in
Canada and the United Kingdom) describes its primary aim as “to advance science and [be] less
influenced by personal, institutional or commercial gain.” Therefore, we view structures deposited
by SG groups as a set of structures which were published by scientists who were not subject to the
usual level of competition for priority.

We are able to identify SG deposits in our data by looking at the structure authors in the PDB.
If the structure was solved by an SG group, that group name will be listed as the last structure

25This test, which takes advantage of the differing motives between the two groups, is similar in spirit to the public
versus private clinical trial comparison in Budish et al. (2015).

25



author (for example, the last author might be “The Joint Center for Structural Genomics”). We
use the list of SG centers tabulated by Grabowski et al. (2016) to flag structures deposited by these
groups.

Table 4 provides summary statistics for our analysis sample separately for non-SG structures
and SG structures. SG structures comprise about 20 percent of the analysis sample. The two groups
differ in several ways. The SG deposits appear to be higher quality (lower refinement resolution,
R-free, and Ramachandran outliers, all of which correspond to higher quality). However, these
deposits also appear to be less complex. They have fewer entities, and lower molecular weight,
residue count, and atom site count — all of which point to these structures being smaller and
simpler to solve than their non-SG counterparts. SG structures are completed more quickly, and
have more authors. In line with their stated mission, the SG structures appear to be less studied,
with fewer UniPROT papers and fewer deposits within their similarity cluster. Only 20 percent of
SG deposits have an associated publication, compared with 83 percent of non-SG deposits. When
they do publish, they receive fewer citations.

Given these facts, it is not surprising that SG structures are lower-potential on average. This
is in line with mission of the SG groups, which seek to provide coverage for less-studied proteins.
However, Figure 9 plots the potential distributions for SG and non-SG structures. Here we see that
despite the difference in means, the histograms show that the two distributions have overlapping
supports. This suggests that we can draw reasonable comparisons between how SG and non-SG
structures are impacted by competition and potential.

4.5.2 Analysis of Structural Genomics Consortia

Figure 10 compares the relationship between potential and maturation for both SG and non-SG
structures. The two binned scatterplots are constructed separately and overlaid on the same set
of axes. Because we bin each series separately, there are the same number of observations in each
marker within the same series (but not across series). The fact that the markers do not line up
vertically over the x-axis reflects the fact that the two series have different supports.

The level shift between the two groups is immediately apparent: at all levels of potential, SG
structures have shorter maturation periods. The difference is over a full year on average. This gap
is consistent with the mission of the SG groups, and is likely driven by their very low publication
rates (20 percent of SG structures have an associated publication). These groups endeavor to get
their results into the scientific domain as quickly as possible, and often do not write or release a
paper to accompany the structure. Non-SG scientists, on the other hand, typically do not deposit
their structures until they have a draft manuscript ready to submit.

However, the key takeaway from Figure 10 is that there is also a visible difference in slopes. As
previously illustrated, the higher-potential non-SG structures are have shorter maturation periods
(are completed more quickly). By contrast, the higher-potential SG structures appear to have have
slightly longer maturation periods.

Figure 11 is isomorphic, but presents the the effects on quality. Across all four quality measures,
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we see that the negative relationship between potential and quality is more negative for the non-SG
(i.e., more competitive) structures than it is for the SG (i.e., less competitive) structures. It is
interesting to note that at low levels of potential, the quality is very similar across both groups.
This suggests that non-SG researchers working on less important (and therefore less competitive)
structures behave like their SG counterparts. It is only at high levels of potential (and therefore
high levels of competition) that the gap becomes meaningful.

We formalize the trends shown in Figures 10 and 11 using a differences-in-differences framework.
For structure i deposited in year t, we estimate the following regression:

Yit = α+ βPit + λNonSGit + δ(Pit ×NonSGit) + τt +X ′itγ + εit (13)

where Y is our outcome of interest (maturation or quality), and NonSG is defined as an indicator
equal to one for structures that were not deposited by an SG group. We choose to use SG deposits
as the “control” group and non-SG deposits as the “treated” group, because we can think of non-
SG deposits as being “treated” with competition. All other variables are the same as previously
defined. β describes the relationship between potential and the outcome for the SG group. λ

measures the average difference in outcomes for non-SG structures relative to SG structures. δ, the
coefficient of particular interest, measures the difference in the potential-outcome correlation for
non-SG structures relative to SG structures.

Table 5 presents the results. Focusing first on column (1) of Panel A, we see that our estimate
of β (the coefficient on potential) is positive, reflecting the fact that SG groups spend longer in
high-potential projects. We also see that our estimate λ (the coefficient on the non-SG indicator)
is positive, reflecting the fact that non-SG structures are completed more slowly on average (due to
higher rates of associated paper publication). However, our estimate of δ, the interaction between
potential and non-SG, is negative and statistically significant. The negative estimate of the δ
coefficient suggests that relationship between potential and maturation is more negative for non-SG
structures relative to SG structures. In fact, it is large enough to more than offset β, implying
that non-SG researchers spend less time on high-potential structures, in contrast with their SG
counterparts.

If we believe that our estimates of β are contaminated by omitted variables bias, then the
difference in the slopes between the SG structures (β+ δ) and the non-SG structures (β) yields the
causal effect of potential via competition. This comparison assumes that both groups suffer from
the same omitted variables bias, and so it is “netted out” when we take the difference. Interpreting δ
in this way implies that competition causes high-potential structures (structures that fall in the 90th

percentile of the potential distribution) to be completed over four months faster than low-potential
structures (structures that fall in the 10th percentile of the potential distribution). Recall that
the average non-SG structure has a maturation period of about a 1.75 years, so this represents a
meaningful (20 percent) reduction.

Columns (2) to (5) focus on the quality outcomes. Starting with Panel A, the negative estimates
of β imply that even among the SG structures, there is a negative relationship between potential and
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quality. The positive estimates of λ reflect the fact that they y-intercept of the non-SG structures lies
above the SG structures. However, more relevant is where the two series intersect at the minimum
value of P (which recall is at about P = 30, rather than P = 0). If we rescaled our measure of P ,
the main effect of non-SG would in fact be close to zero, suggesting that quality is similar across
two groups at the lowest level of potential.26

The estimates of the primary coefficient of interest, δ, are negative across all four quality mea-
sures and statistically significant at the one percent level. This implies that the negative relationship
between potential and quality is stronger for the non-SG (i.e. more competitive) researchers. Fo-
cusing on column (5), we can interpret the the estimated δ coefficient as implying that among the
non-SG structures, competition causes high-potential structures to be 0.4 standard deviations lower
quality than low-potential structures, relative to SG structures. The magnitudes of the estimates
are consistent across all of our quality measures. The inclusion of complexity controls in Panel B
does not alter the estimates meaningfully.

The fact that the relationship between potential and quality remains negative even among the
SG structures (i.e., the fact that β < 0) merits further discussion. If researchers in these groups are
truly agnostic toward competition, then we would expect there to be no relationship. There are two
possible explanations for this negative slope. First, perhaps researchers in SG groups do care about
competition, but to a lesser extent than their non-SG counterparts. This could lead to negative but
less steep slope. If this lesser (but non-zero) competition is the reason for the negative slope, then
the effect of potential on quality due to competition in the non-SG group would be β+δ — in other
words, we would not want to net out β.

Alternatively, SG researchers may be fully indifferent to competition, but there is a correlation
between potential and unobserved complexity in both groups. Then netting out β strips the omitted
variables bias from our estimates, and δ is the correct estimate. In reality, both effects may be at
play. The fact that maturation is positively correlated with potential in the SG groups suggests
that there may indeed be a correlation between unobserved complexity and potential. We view δ

as our preferred estimate, but flag that it is likely a conservative lower bound.

4.6 The Relationship between Competition and Quality

Competition is the channel by which high-potential projects are ultimately executed with lower
quality. This is clarified by Proposition 3, which predicts that more competitive projects are rushed
and are therefore lower quality. However, as emphasized by the model, the relevant measure of
competition is the researcher’s perceived threat of having another researcher in the race. We cannot
measure this risk, as discussed in Section 3.2.4. Instead, we measure ex-post realized competition.
This noisy proxy may lead to attenuated estimates of the effect of competition on quality. Moreover,
realized competition may be correlated with unobserved factors that also correlate with quality.

However, the model also suggests a solution: we can instrument for competition using project
26Focusing on column (5) and plugging in P = 30, we see that Q̂SG(30) = constant− 0.009× 30 = constant− 0.26

while Q̂NonSG(30) = constant+ 0.273− (0.009 + 0.012)× 30 = constant− 0.35.
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potential. Empirically, we have already demonstrated that there is a first stage (Section 4.2) and
a reduced form (Section 4.3). This is enough to tell us that the relationship between competition
and quality must be negative. Still, it is informative to recover the magnitudes.

We start by estimating the ordinary least squares regression using our noisy measure of ex-post
competition. For structure i deposited in year t, we estimate:

Yit = α+ βCit +X ′itγ + τt + εit (14)

where Y is our outcome of interest (maturation or quality) and C is our proxy for competition. All
other variables are the same as previously defined.

However, we also estimate a separate specification, using two-stage least squares and instru-
menting for competition using project potential. The first stage regression is identical to Equation
12, with competition (measured as the log number of structures deposited in the same cluster within
two years) as the dependent variable. The second stage regression for structure i deposited in year
t is given by:

Yit = α̃+ β̃Ĉit +X ′itγ̃ + τ̃t + ηit (15)

where Y is the outcome of interest (maturation or quality), Ĉ is the fitted measure of competition
from the first stage, X is our vector of complexity controls, τ̃ is the deposition year fixed effect,
and η is the idiosyncratic error term. β̃ is the coefficient of interest, as it measures the causal
effect of competition on quality. The exclusion restriction in this case is that project potential only
affects project quality (or maturation) through its impact on competition, conditional on controls.
In other words, potential is not correlated with unobserved factors that impact quality directly once
we condition on X. Our results in Section 4.4 and 4.5 help bolster this case.

Table 6 shows the results from both of these specifications. Comparing the coefficients of β (in
Panel A) and β̃ (in Panel B), we see that competition is correlated with shorter maturation periods
and lower quality in both specifications. However, as perhaps expected, we see that the estimates in
Panel A are attenuated. To interpret the coefficients in Panel B, consider one structure where the
expected number of researchers working is 1.25 and another more competitive structure where the
expected number of researchers working is 1.5. This can roughly be interpreted as a 25 percentage
point increase in the probability of a competitor. The coefficient in column (1) implies this second
structure would be completed one to two months faster.27 The coefficient in column (5) implies the
second structure would score 0.4 standard deviations lower using our quality index.

4.7 Benchmarking the Quality Estimates

Are the negative quality effects we estimate large enough to matter for overall scientific productivity
in our setting? Rushing leads to lower quality structures, but are these structures low enough quality
to prevent researchers from drawing useful conclusions or using the structure in follow-on work?
According to structural biologists, the answer depends on what the researcher wishes to do with

27−0.610× (ln 1.5− ln 1.25) = 0.11 years or 1.33 months.
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the structure. If the researcher simply wants to understand the protein’s function, a lower-quality
structural model may be sufficient. However, if a scientist hopes to use a protein structure for
structure-based drug design, then a high-quality structure is required. Anderson (2003) suggests
that in order to be useful for structure-based drug design, the structures must have a resolution
of 2.5Å or lower, and an R-free of 0.25 or lower.28 While these cutoffs may not be hard-and-fast,
they tell us something about the usefulness of a structure given its quality. It is not uncommon for
structures to fall below these thresholds. About 35 percent of the non-SG structures in our analysis
sample lie below this resolution cutoff. About 45 percent of these same structures lie below the
R-free cutoff.

Drugs typically work by binding to proteins, changing the protein’s function. The protein that
the drug binds to is known as the “target.” In an effort to empirically validate these claims, we
use DrugBank to link drugs to their protein targets, and these targets to their PDB ID(s). For
every structure in the PDB, this allows us to count the number of drugs that target that particular
structure. If quality is important for drug development, we would expect high-quality structures
(especially structures that surpass the Anderson (2003) criteria) to be targeted more frequently by
drugs, all else equal.

Panel A of Figure 12 shows the relationship between drug development and resolution in a
binned scatterplot.29 Here we plot unstandardized resolution, so recall that lower values correspond
to higher quality. We also plot the 2.5Å cutoff for reference. There is a clear positive relationship
between higher levels of drug development and lower (i.e., better) resolution. The relationship
is nonlinear, with a sharp drop off at around 2.0Å, which is slightly lower (i.e., better) than the
2.5Å cutoff. Panel B repeats this procedure with R-free (again, lower values unstandardized R-free
correspond to higher quality). We again see a sharp drop off in drug development at lower quality.
Here that drop off occurs at an R-free of about 0.23, which is slightly lower (i.e., better) than the 0.25
threshold proposed by Anderson (2003). Still, taken together with the conventional wisdom from
the literature, these figures suggest that a certain level of quality is necessary for drug development.
Moreover, this threshold is stringent enough that many of the structures in our data do not meet
or surpass it. This suggests that the negative quality effects we measure are large enough to impact
downstream drug development.

5 Welfare Implications

Thus far, we have been focused entirely on the positive predictions of the model. Normative con-
clusions are more difficult to draw. Nevertheless, in the first part of this section, we make the case
that researchers cannot easily “fix” low-quality structures, and so the quality effects we measure
capture a real inefficiency in the generation of new scientific knowledge. While many low-quality

28Recall that for the raw resolution and R-free measures, lower values correspond to better quality.
29If a structure has been deposited multiple times, we use resolution form the best (i.e., highest-quality) structure.

The idea is that a pharmaceutical firm would always use the best structure available. We discuss this in more detail
in Section 5.1.
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structures are improved over time, offsetting some of the detrimental effects of racing, this comes
at a substantial cost. Next, we turn to the question of optimal policy. We show that the current
allocation of investment and maturation chosen by racing teams falls short of idealized first-best,
but it may represent a constrained second-best allocation. We discuss alternative policies that might
improve quality and investment levels in science.

5.1 Will Follow-On Work Fix the Problem?

Even if the quality effects we measure are meaningful, is the rush to publish and the subsequent
lower-quality work necessarily bad for science? Society values speed of disclosure as well as quality,
in part because the quality of a discovery might be improved upon over time. Therefore, in certain
circumstances, a rushed low-quality discovery might be preferable to a higher-quality breakthrough
that takes longer to develop. The overall costs and benefits of rushing depends in part on the
knowledge production model. If science progresses like a quality ladder, where each researcher can
build frictionlessly on existing work (Grossman and Helpman, 1991), then quick-and-dirty work is
likely not bad for science. To fix ideas, consider the example of ornithologist and molecular biologist
Charles Sibley. In 1958, he began collecting egg white samples from as many birds as possible in
order to better understand the differences between species. In 1960, he published a survey of over
5,000 proteins from over 700 different species (Sibley, 1960; Strasser, 2019). Now, suppose Sibley
had been concerned that a competitor was working on a similar project, and instead released his
survey a year earlier, in 1959, with proteins from only 350 different species. Another ornithologist
(or indeed, Sibley himself) could add to the survey without having to regenerate any of the existing
work.

On the other hand, consider a structural biologist working on a new protein structure. Suppose,
for example, that she has a choice: she could spend a year growing her protein crystals and solving
and refining her structure, which would yield a 2.5Å structure. Alternatively, she could rush —
spending just six months, she could generate a 3.0Å structure. If she rushes, consider the incentives
for another researcher to improve the structure from 3.0Å to 2.5Å. This researcher would have
to start from scratch, growing new crystals, generating new experimental data, and creating a
structural model. The new researcher would have to sink an entire year — not to mention the
financial cost — to achieve the marginal 0.5Å quality improvement. Even if the new researcher
decides the improvement is worth the cost, it is inefficient. The first researcher could have achieved
the 2.5Å structure with a year of work. Instead, the combined researchers spend a year and a half.
The key point is that — in contrast to quality ladder models (and the toy naturalist example above),
which assume that researchers can frictionlessly build on most current work — the new researcher
has to re-sink the same costs in order to generate a marginal improvement.

Bringing this logic into the context of our model, suppose a follow-on researcher is considering
whether to improve the quality of a project with potential P and quality Q(mC∗). If she generates
higher quality by letting the project mature for mIMP > mC∗ , then she will be rewarded for her
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marginal quality improvement. Therefore, the present discounted value of this improvement is

e−rm
IMP

P
[
Q(mIMP )−Q(mC∗)

]
. (16)

The optimal maturation period for the improved structure, mIMP ∗ , is given by30

mIMP ∗ ∈ arg max
mIMP

{
e−rm

IMP
P
[
Q(mIMP )−Q(mC∗)

]}
(17)

which yields the first-order condition

Q′(mIMP ∗)

[Q(mIMP ∗)−Q(mC∗)]
= r. (18)

Lemma 1. The present discounted value of improving a project is increasing in P , project potential.

Proof. See Appendix A.1. The intuition is that the present discounted value of improving a
project depends primarily on the project’s potential (P ) and the quality improvement (Q(mIMP ∗)−
Q(mC∗)). Both of these are increasing in P , so the effect on the present discounted value is posi-
tive.

This above analysis of the maturation decision is conditional on successfully starting the project.
However, before entering the project the researcher must first sink an investment cost I. As we
discussed in the ornithologist versus structural biologist example above, the follow-on researcher in
our setting must re-sink this cost — she cannot take advantage of the fact that a previous researcher
already invested. As before, if a researcher invests I, she has probability g(I) of successfully starting
the project where g(·) is an increasing, concave function. The optimal value of this investment,
IIMP ∗ , is given by

IIMP ∗ ∈ arg max
IIMP

{
g(IIMP )e−rm

IMP∗
P
[
Q(mIMP ∗)−Q(mC∗)

]
− IIMP

}
(19)

which yields the first-order condition

g′(IIMP ∗) =
1

e−rmIMP∗P [Q(mIMP ∗)−Q(mC∗)]
. (20)

This immediately gives us Proposition 6.

Proposition 6. The optimal level of investment for a project that involves re-solving an existing
structure (IIMP ∗) is increasing in project potential (P ). Therefore, high-potential projects are more
likely to be re-solved.

Proof. This comes immediately from noting that g′(·) is decreasing and applying Lemma 1.
30Here we are ignoring racing concerns. We think this is reasonable when focusing on new deposits of an already-

solved structure that occur some time after the initial structure deposit.
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To document whether Proposition 6 is true empirically, we need to identify when a project in our
analysis sample is re-solved.31 We are once again able to use the PDB’s cluster classification. If we
see that a structure in our analysis sample has another structure in its same similarity cluster that
was deposited two years or later than the initial structure, we say that structure was re-solved.32

We use this “two year” rule in an effort to separate contemporaneous work from replications or
re-deposits. Panel A of Figure 13 plots the probability a structure is re-solved as a function of
project potential. We observe exactly what Proposition 6 predicts — higher P structures are more
likely to be re-solved. Scientists are more willing to invest in re-solving these structures because (a)
they are more valuable and (b) there is more room for improvement.

We can use the re-solved structures within a cluster to find the best quality ever produced for
a particular protein. What does Proposition 6 tell us about the relationship between the maximum
quality of a structure and P? At a given value of P , the average maximum quality of all structures
with potential equal to P will be given by

Qmax(P ) = Q(mC∗) + g(IIMP ∗)
[
Q(mIMP ∗)−Q(mC∗)

]
. (21)

The first term represents the initial quality, while the second term represents the probability there
is an improved structure, times the quality improvement. Note that mC∗ , IIMP ∗ , and mIMP ∗ all
depend on P . What happens to Qmax as P increases? This leads to the following proposition:

Proposition 7. As P increases, the sign of the effect on Qmax is ambiguous. However, the slope
of Qmax versus P is higher than the slope of Q(mC∗). In other words, dQmax

dP > dQ(mC
∗

)
dP .

Proof. See Appendix A.1. Intuitively, both g(IIMP ∗) and Q(mIMP ∗) − Q(mC∗) are increasing in
P . This must at least partially offset the negative relationship between Q(mC∗) and P .

Panel B of Figure 13 tests this proposition. The first series on the plot (the dots) shows the
relationship between potential and a structure’s initial quality, as in Figure 8. However, the second
series (the diamonds) shows the relationship between potential and the structure’smaximum quality,
when looking across all structures within a similarity cluster. The vertical distance between the
red and blue series represents the average quality improvement. As predicted by Proposition 7, the
relationship between potential and maximum quality is less negative than the relationship between
potential and initial quality. In fact, the relationship between potential and maximum quality is
U-shaped. The intuition is that at low values of P , the incentives to re-solve are low, but the initial
quality is high. At high values of P , the incentives to re-solve are high. This leads to high maximum
quality at the extremes of the potential distribution, and lower maximum quality in the middle of
the distribution.

Returning to our concerns about project complexity in Section 4.4, it is comforting to see that
the maximum quality values at the top end of the potential distribution are nearly as high as the

31Recall that our analysis sample restricts to structures that were solved for the first time.
32In practice this is complicated by the fact that clusters are assigned at the entity level which is a smaller unit of

analysis than a structure (one structure can have multiple entities). We discuss the details in Appendix B.
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maximum quality values at the bottom of the potential distribution, because it suggests that high
quality is possible for these high-potential structures. If the negative relationship between potential
and initial quality were driven purely by structure complexity, we might expect that it is simply
impossible to solve these high-potential structures at the same level of quality.33

Together, Panels A and B of Figure 13 suggest that there are three distinct sources of welfare
loss associated with rushing in structural biology. First, there is the loss of structure quality, which
translates to lost downstream innovation. However, Panel B shows that without taking into account
the subsequent re-deposits, we will overestimate the magnitude of this lost quality as much of it
(particularly for the highest potential structures) is made up in future work. Second, there is the time
cost associated with the re-deposits. While much of the lost structure quality is eventually reclaimed
via follow-on work, this takes additional time. Finally, there is the monetary cost associated with
re-solving the same structures. The PDB estimates that the average cost to replicate a structure is
about $100,000 (Sullivan et al., 2017).

5.2 Optimal Policy

5.2.1 The Infeasible First Best

We start our optimal policy analysis by considering how equilibrium maturation and investment
that arises from researchers competing for priority (i.e., mC∗ and IC

∗) compares to the outcome
preferred by an unconstrained social planner. In this setting, an unconstrained social planner would
like to dictate both investment (I) and maturation (m) to researchers. The social planner’s objective
differs from an individual researcher’s objective in two ways: first, the social planner only cares that
at least one researcher successfully starts the project. If both researchers start the project, the
planner is indifferent as to which researcher completes the project first, and the second (replicated)
structure adds no additional social value. This wedge is similar to the inefficiency identified by
Dasgupta and Maskin (1987). Second, consistent with the notion of research generating positive
spillovers, the social value of a given project is greater than the private value. We operationalize this
by assuming that the social planner’s PDV of the project at completion is e−rmkPQ(m), rather than
e−rmθPQ(m) or e−rmθPQ(m) (the first- and second-place researcher’s private PDV, respectively).
We further assume that k is large relative to θ and θ (we put more formal bounds on k in the
analysis below). Putting these facts together, we have the social planner’s objective function:

max
m,I


(

1− (1− g(I))2
)

︸ ︷︷ ︸
probability at least one researcher successfully starts

· e−rmkPQ(m)︸ ︷︷ ︸
social PDV of project

− 2I︸︷︷︸
investment costs

 . (22)

33This is not a perfect test, because technology may have improved between when the original structure was de-
posited and when the new structure was deposited, enabling better quality structures. Nevertheless, it is a reassuring
data point.
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Contrast this with the individual researcher’s objective function (Equation 9, reproduced and
slightly re-arranged below):

max
mi,Ii

 g(Ii)︸︷︷︸
probability i successfully starts

· e−rmi
[
θ − 1

2
g(Ij)(θ − θ)

]
PQ(mi)︸ ︷︷ ︸

i′s expected private PDV of project

− Ii︸︷︷︸
i′s investment cost

 . (23)

The socially optimal value of m, denoted mSP ∗ , is defined by the first-order condition of Equation
22 with respect to m:

Q′(mSP ∗)

Q(mSP ∗)
= r. (24)

Notice that this is identical to the first-order condition which defines the optimal value of m in
the absence of competition (mNC∗ , see Equation 4). Therefore, we know that mSP ∗ > mC∗ . In
other words, the social planner wants projects to mature for longer than researchers will allow them
to in a competitive environment. This happens precisely because the social planner — unlike the
individual researcher — does not care who finishes the project first. Concerns over priority distort
the individual researcher’s choice of m away from the social optimum.

The socially optimal value of I, denoted ISP ∗ , is defined by the first-order condition of Equation
22 with respect to I:

g′(ISP
∗
) =

1

e−rmSP
∗
kPQ(mSP ∗)(1− g(ISP ∗))

. (25)

Comparing this equation with the first-order condition that defines IC∗ (Equation 10), we can see
that if k is sufficiently large,34 then ISP ∗ > IC

∗ . Intuitively, if the social planner values the project
sufficiently more than the researcher, the social planner will want the researcher to invest more than
the privately optimal level.

The empirical evidence supports the theoretical argument that individual researchers distort
their behavior away from the social optimum. More specifically, Equation 24 implies that if we were
at the first best, then the relationship between potential and quality should be flat. Instead, we
observe a negative relationship between potential and quality, consistent with researchers distorting
their behavior in an effort to complete their projects first.

5.2.2 The Feasible Second Best: Using Credit Share as a Policy Lever

The social planner cannot realistically dictate I and m for each project. Monitoring the progress
of every scientific team as they work on their projects requires too much information to be feasible.
Instead, a more reasonable lever for the social planner might be θ or θ, the share of credit allocated
to the first and second-place team, respectively. While the literature has often assumed that priority
races are winner-take-all, implying that θ = 0 (for example, Merton (1957); Fudenberg et al. (1983);

34More precisely, if k >
θ− 1

2
g(Ij)(θ−θ)

1−g(ISP∗
)

then k meets the criteria of “sufficiently large.”
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Bobtcheff et al. (2017)) empirical evidence suggests that this is not the case. Hill and Stein (2020)
find that in structural biology, winning teams involved in priority races receive about 55 percent of
the credit (as measured by citations) — a far cry from 100 percent. While that same paper provides
survey evidence to suggest that structural biologists are more pessimistic about the costs of being
scooped (the surveyed authors estimated the winning paper would accrue about 70 percent of the
total citations), the 100 percent benchmark does not appear to be correct in this setting.

Moreover, it appears that the bulk of this credit disparity is driven by journal placement rather
than citation behavior. This suggests that the priority premium is primarily driven by journal
editors and reviewers, who could perhaps be influenced to change their policies. Indeed, a handful
of journals have begun to do exactly this — changing their policies to explicitly state that they
will treat recently scooped papers the same as novel papers. Concerns about competition harming
the quality of submitted work appear to be top of mind. For example, in 2017 the journal eLife
released the following statement:

“We all know graduate students, postdocs and faculty members who have been dev-
astated when a project that they have been working on for years is ‘scooped’ by another
laboratory, especially when they did not know that the other group had been working
on a similar project. And many of us know researchers who have rushed a study into
publication before doing all the necessary controls because they were afraid of being
scooped. Of course, healthy competition can be good for science, but the pressure to be
first is often deleterious, not only to the way the science is conducted and the data are
analyzed, but also for the messages it sends to our young scientists. Being first should
never take priority over doing it right or the search for the truth. For these reasons,
the editors at eLife have always taken the position that we should evaluate a paper, to
the extent we can, on its own merits, and that we should not penalize a manuscript we
are reviewing if a paper on a similar topic was published a few weeks or months earlier”
(Marder, 2017).

Other journals have released similar policies.35 In light of these changes, the distribution of credit
is a particularly interesting and relevant policy tool to study. However, the precise way in which we
allow the social planner to manipulate the distribution of credit will have different implications for
optimal policy. We consider two cases in turn.

35For example, in January 2018, PLOS Biology released a statement reading, “scientific research can be a cutthroat
business, with undue pressure to publish quickly, first, and frequently. The resulting race to publish ahead of
competitors is intense and to the detriment of the scientific endeavor. Just as summiting Everest second is still
an incredible achievement, so too, we believe, is the scientific research resulting from a group who have (perhaps
inadvertently) replicated the important findings of another group. To recognize this, we are formalizing a policy
whereby manuscripts that confirm or extend a recently published study (“scooped” manuscripts, also referred to as
complementary) are eligible for consideration at PLOS Biology (The PLOS Biology Staff Editors, 2018). In November
2018 the editor of Cell Systems released a statement saying “Cell Systems thinks it is valuable — as well as simply
humane — to welcome strong experimental studies that are “scooped” (Justman, 2018).
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Case 1: Total Rewards are Fixed. In the first case, we consider a social planner who can
manipulate θ and θ , but cannot change the size of the total private value of the project. In other
words, θ and θ can vary, but θ + θ is fixed. To fix notation, let θ + θ = V . In this case, the fact
that θ ≥ θ implies that θ ≥ V

2 and 1− θ ≤ V
2 .

Here we are allowing the social planner to manipulate one parameter (θ) in an effort to target
two choice variables (mC∗ and IC∗). In other words, the social planner would like to pick a value
of θ that will induce researchers to select mC∗ = mSP ∗ and IC∗ = ISP

∗ . However, as we will show
below, no value of θ makes this possible. With just θ at the social planner’s disposal, the planner
cannot attain the first best.

Lemma 2. If the social planner sets θ = θ = V
2 , then researchers will select the optimal maturation

period. However, if k is sufficiently large, then investment will be too low.

Proof. Recall that the social planner would like the researcher to behave as if there is no competition.
In other words, mSP ∗ = mNC∗ . Intuitively, if we equate the rewards for the first- and second-
place researcher, we have eliminated competition, and so researchers will let their projects mature
optimally. However, this results in investment below the socially optimal level. See Appendix A.1
for more detail.

By setting θ = V − θ = V
2 , the social planner is able to select the optimal maturation period,

but investment is too low. Next, we will show that as the social planner raises θ — making priority
rewards more lopsided — maturation periods become shorter, but investment may increase. This
sets up a tradeoff for the social planner: more unequal priority rewards lead to shorter maturation
periods (moving us away from the optimal maturation level), but potentially higher investment
levels (moving us closer to the optimal investment level). This implies that optimal priority rewards
may be unequal. Proposition 8 below formalizes this logic.

Proposition 8. If we restrict θ + θ to sum to a fixed value V , then the researcher’s optimal mat-
uration period mC∗ is decreasing in θ, while the researcher’s optimal investment level IC∗ may be
increasing in θ. This implies that the optimal choice of θ∗ may lie between V

2 and 1. The result-
ing values of mC∗(θ) and IC∗(θ) will not achieve the social optimum, with mC∗(θ

∗
) < mSP ∗ and

IC
∗
(θ
∗
) < ISP

∗ .

Proof. See Appendix A.1.

Proposition 8 helps us interpret the welfare implications of the negative relationship between
potential and quality that we document in our empirical results. As clarified by the model, this
negative relationship is a product of the unequal priority rewards — in other words, it will exist as
long as θ > θ. However, proposition 8 illustrates that the optimal choice of θ∗ may in fact result in
lopsided priority rewards, and so the negative relationship between potential and quality — while
inconsistent with an unconstrained social optimum — is potentially consistent with a constrained
second-best solution. In other words, the negative relationship between potential and quality does
not imply that a constrained social planner could increase overall welfare.
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Case 2: Total Rewards Can Vary. In this case, we consider a social planner who can manip-
ulate θ and θ independently, with no restrictions on θ + θ. Intuitively, the social planner has more
freedom in this case because θ and θ are independent. In this case, we are allowing the planner to
manipulate two parameters (θ and θ ) in an effort to target two choice variables (mC∗ and IC∗).
This allows the social planner to achieve the socially optimal investment and maturation, as shown
in Proposition 9 below.

Proposition 9. If we allow the social planner to select θ and θ independently, then the planner can
achieve the optimal mC∗ and IC∗ by setting θ∗ = θ∗ = k(1− g(ISP

∗
)), which is increasing in k.

Proof. Setting θ = θ ensures that we achieve the socially optimal maturation, as shown in Lemma
2. Allowing θ+ θ to be unconstrained means we can induce the appropriate amount of investment.
Intuitively, if the social value of a project is high, then θ + θ will be larger. See Appendix A.1 for
details.

Of the two cases outlined above, which represents a more realistic policy lever that a social
planner or policy maker could dial up or down? In the basic sciences, where rewards come primarily
in the form of credit, we argue that Case 1 is more relevant. Credit is a fickle thing — not handed
down by a particular individual, but rather assigned by the community. Reputations are bolstered
by awards, prizes, and rankings which are necessarily zero-sum, making manufacturing additional
credit (i.e., increasing θ + θ) difficult. While journal editors and reviewers can endeavor to bring
more attention to scooped researchers via some of the example journal policies outlined above, this
likely comes at the expense of the credit granted to the first-place researcher, who is now viewed as
more of a co-discoverer rather than the sole discoverer.

On the other hand, in settings where researchers are primarily remunerated with wages rather
than credit, Case 2 is more relevant. Wages, unlike credit, are easy to manipulate. A firm can
simply choose to set wages optimally, and recover the first-best investment level and maturation
period. It is worth noting that if k is large, then optimal wages will be high. Firms will only
choose to set these high wages if they capture the full social surplus (in other words, if there are
not positive spillovers outside the firm). Still, this highlights one advantage of conducting research
inside of firms. As emphasized by Holmstrom (1999), it allows for “access to more instruments,”
leading to a better set of incentives.

5.2.3 An Alternative Policy: Ending Races Early

Another policy option would be to end priority races when the first team successfully starts the
project, and let that team carry out the maturation phase without threat of competition. In other
words, once one team successfully started the project, other teams would be barred from entering.
This would lead to teams choosing the optimal maturation period (recall that the maturation period
selected in the absence of competition is the same as the socially optimal maturation period).
Investment levels would depend on the payoff that the winning team receives, but they would be
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higher than in the standard competitive case, because the projects are more valuable when allowed
to fully mature.

This policy works because of the somewhat specific nature of our model. In particular, all
the uncertainty occurs in the investment stage, while the maturation stage is purely deterministic.
Having two teams competing during the investment stage can be helpful, because it increases the
probability that at least one team successfully starts the project. But once at least one team
has entered the project, there is no more uncertainty, and so the second team no longer brings a
benefit. Yet, despite the model-specific nature of this policy, we highlight it because it is relevant
in structural biology — so relevant in fact, that an informal policy along these lines once existed in
the field.

Recall that when solving protein structures, the most difficult and risky part of the process
is growing the protein crystal. Researchers may try to crystallize a protein under a variety of
conditions and simply fail to generate a usable crystal. Therefore, growing the crystal is analogous
to the investment stage of the model. Researchers sink resources, which increases the odds they
successfully crystallize their protein and can start building their model. By contrast, building the
atomic model from the diffraction data is a more deterministic process, akin to the maturation
phase. Therefore, the analog of ending priority races early in this setting would be to let researchers
“call dibs” on a protein structure once they successfully crystallize it. Then they can build the
structure from their experimental data, without fear of being preempted.

In fact, in the early days of structural biology, there was a strong, community-enforced norm
that if “someone else is working on [a structure] — hands off” (Strasser, 2019). As Ramakrishnan
(2018) explains, scientists would announce (often through publication) that they had successfully
crystallized a protein, and “there was a tradition that if someone had produced crystals of something,
they were usually left alone to solve the problem.” This norm exactly parallels the policy of stopping
races once the first research has successfully entered the project. However, as the field grew and
the number of unsolved structures dwindled, this precedent became too difficult to enforce. Today
structural biologists are secretive about what they are working on, knowing that the “hands off” rule
no longer applies (Strasser, 2019). Still, it is interesting to note that structural biology organically
developed a set of norms which alleviated the problem of rushing and associated lower quality work,
even if those norms have not been sustained to the present day.

6 Conclusion

This paper documents that in the field of structural biology, competition to publish first and claim
priority causes researchers to release their work prematurely, leading to lower quality science. We
explore the implications of this fact in a model where scientists choose which projects to work on,
and how long to let them mature. Our model clarifies that because important problems in science
are more crowded and competitive, perversely it is exactly these important projects that will be
the most poorly executed. We find strong evidence of this negative relationship between project
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potential and project quality in our data. While this negative relationship is inconsistent with an
idealized first best, where a social planner can dictate how much investment researchers dedicate
to projects and how long they let these projects mature, it not inconsistent with a more realistic
constrained second best, where the social planner can only dictate how credit is shared between
first- and second-place researchers.

We stop short of attempting to calibrate an optimal credit split between first- and second-place
scientists. Such a calibration would require assigning dollar values to marginal quality improvements,
as well as careful measurement of project investment, both of which are beyond the scope of this
project and our data. However, perhaps more importantly, such a calibration would likely be
incomplete. Competition shapes the field of science in numerous ways. In this project, we focus on
the effect it has on scientific quality, and explore the potential tradeoff a social planner faces between
inducing more investment versus longer maturation (and thus higher-quality work). However, other
margins are likely important as well. For example, heightened competition may reduce potentially
productive collaborations across different labs, promoting secrecy and ultimately slowing the pace
of innovation (Walsh and Hong, 2003; Anderson et al., 2007). Competition also may influence who
selects into and remains in certain fields of science. Others have expressed concern that increased
competition has led to “crippling demands” on scientists’ time, leaving little time for “thinking,
reading, or talking with peers” — key ingredients for transformative research (Alberts et al., 2014).
These additional margins represent productive avenues for future research, and are also key inputs
to consider when determining how best to allocate credit and the optimal level of competition in
science.
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Figures and Tables

Figure 1: Illustration of a Protein Structure at Different Refinement Resolutions

Notes: This figure shows the electron density maps from a fragment of the triclinic lysozyme (PDB ID 2VB1)
at different refinement resolutions. The Angstrom (Å) values measure the smallest distance between crystal lattice
planes that can be detected in the experimental data. Lower values correspond to better (higher-resolution) structures.
Figure taken from Wlodawer et al. (2008).

Figure 2: Model Summary

Notes: This figure summarizes the setup of the model described in the text.
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Figure 3: Summary of the X-Ray Crystallography Process

Notes: This figure summarizes the process of solving a protein structure via x-ray crystallography. The images in
this figure were taken from Thomas Splettstoesser (www.scistyle.com) and rendered with PyMol based on PDB ID
1MBO.
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Figure 4: LASSO Validation

Notes: Panel A of this figure plots the distribution of actual and predicted potential. Panel B presents a graph of
actual versus predicted potential as a binned scatterplot. In both panels, potential is measured by the percentile of the
structure’s three-year citation count. To construct this binned scatterplot, we divide the sample into 20 equal-sized
groups based on the ventiles of predicted three-year citation percentile, and plot the mean of actual three-year citation
percentile against the mean of predicted three-year citation percentile in each bin. The sample is all structures in the
analysis sample that have a three-year citation count.

Figure 5: The Effect of Potential on Investment

Notes: This figure plots the relationship between potential and investment, testing Proposition 4 of the model.
Potential is measured as the predicted three-year citation percentile. Investment is measured as either the number
of structure authors or number of paper authors. The plot is presented as a binned scatterplot. To construct this
binned scatterplot, we first residualize potential and investment with respect to a set of deposition year indicators.
We then divide the sample into 20 equal-sized groups based on the ventiles of the potential measure, and plot the
mean of investment against the mean of potential in each bin. Finally, we add back the mean investment to make
the scale easier to interpret after residualizing. The sample in Panel A is the full analysis sample as defined in the
text, excluding SG deposits. The sample in Panel B is the same, but excludes observations that have no associated
publication and therefore no paper author count.

49



Figure 6: The Effect of Potential on Competition

Notes: This figure plots the relationship between potential and competition, testing Proposition 4. Potential is
measured as the predicted three-year citation percentile. Competition is measured as the log number of deposits that
appear in the 100 percent similarity cluster within two years of the first deposit in the cluster. The plot is presented as
a binned scatterplot. To construct this binned scatterplot, we first residualize potential and competition with respect
to a set of deposition year indicators. We then divide the sample into 20 equal-sized groups based on the ventiles of
the potential measure, and plot the mean of competition against the mean of potential in each bin. Finally, we add
back the mean competition to make the scale easier to interpret after residualizing. The sample is the full analysis
sample as defined in the text, excluding SG deposits.
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Figure 7: The Effect of Potential on Maturation

Notes: This figure plots the relationship between potential and maturation, testing Proposition 5. Potential is
measured as the predicted three-year citation percentile. Maturation is measured by the number of years between the
deposition and collection dates. The plot is presented as a binned scatterplot. To construct this binned scatterplot,
we first residualize potential and maturation with respect to a set of deposition year indicators. We then divide the
sample into 20 equal-sized groups based on the ventiles of the potential measure, and plot the mean of maturation
against the mean of potential in each bin. Finally, we add back the mean maturation to make the scale easier to
interpret after residualizing. The sample is the full analysis sample as defined in the text, excluding SG deposits and
observations where the maturation is missing.
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Figure 8: The Effect of Potential on Quality

Notes: This figure plots the relationship between potential and quality, testing Proposition 5. Potential is measured as
the predicted three-year citation percentile. Quality is measured by our four standardized quality measures described
in detail in Section 3.2.1. The plot is presented as a binned scatterplot. To construct this binned scatterplot, we first
residualize potential and quality with respect to a set of deposition year indicators. We then divide the sample into
20 equal-sized groups based on the ventiles of the potential measure, and plot the mean of quality against the mean of
potential in each bin. Finally, we add back the mean quality to make the scale easier to interpret after residualizing.
The sample is the full analysis sample as defined in the text, excluding SG deposits.
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Figure 9: Potential Distributions by Structural Genomics Status

Notes: This figure plots the distribution of potential (measured by predicted three-year citation percentile) for both
non-SG and SG structures. The sample is all structures in the analysis sample.
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Figure 10: The Effect of Potential on Maturation by Structural Genomics Status

Notes: This figure plots the relationship between potential and maturation, split by non-SG and SG structures.
Potential is measured as the predicted three-year citation percentile. Maturation is measured by the number of years
between the deposition and collection dates. The plots are presented as two separate binned scatterplots, overlaid
on the same axes. To construct these binned scatterplots, we first residualize potential and maturation with respect
to a set of deposition year indicators. We then divide the sample into 20 equal-sized groups based on the ventiles of
the potential measure, and plot the mean of maturation against the mean of potential in each bin. Finally, we add
back the mean maturation period to make the scale easier to interpret after residualizing. We repeat this procedure
separately for the SG and non-SG structures, but plot the resulting series on the same axes. As a result, there are
the same number of observations within each point in the same series. The sample is the full analysis sample where
the maturation variable is non-missing.
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Figure 11: The Effect of Potential on Quality by Structural Genomics Status

Notes: This figure plots the relationship between potential and quality, split by non-SG and SG structures. Potential
is measured as the predicted three-year citation percentile. Quality is measured by our four standardized quality
measures described in detail in Section 3.2.1. The plots are presented as two separate binned scatterplots, overlaid
on the same axes. To construct these binned scatterplots, we first residualize potential and quality with respect to a
set of deposition year indicators. We then divide the sample into 20 equal-sized groups based on the ventiles of the
potential measure, and plot the mean of quality against the mean of potential in each bin. Finally, we add back the
mean quality to make the scale easier to interpret after residualizing. We repeat this procedure separately for the
SG and non-SG structures, but plot the resulting series on the same axes. As a result, there are the same number of
observations within each point in the same series. The sample is the full analysis sample.
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Figure 12: Relationship between Structure Quality and Drug Development

Notes: This figure plots the relationship between structure quality and structure’s use in drug design. Quality is
measured using unstandardized refinement resolution and R-free, so lower values indicate better quality. In instances
where the same structure is deposited in the PDB multiple times, we take the best quality. The results are presented
as a binned scatterplot. To construct this binned scatterplot, we divide the sample into 20 equal-sized groups based
on the ventiles of resolution or R-free distribution, and plot the mean of the drug count against the mean of quality
measure in each bin. The dashed lines indicate the quality thresholds for drug development proposed by Anderson
(2003).

Figure 13: Subsequent Structure Deposits and Maximum Structure Quality

Notes: This figure plots the relationship between potential and probability of subsequent deposition (Panel A) and
the relationship between potential and initial quality and best quality (Panel B). A subsequent deposit is defined
as a deposit in the same 100 percent cluster that is deposited in the PDB more than two years after the first
deposit. Quality is measured using our quality index described in detail in Section 3.2.1. The plots are presented
as binned scatterplots. To construct these binned scatterplots, we first residualize the dependent variable (indicator
for subsequent deposit, the initial quality, or the best quality) and potential with respect to a set of deposition year
indicators. We then divide the sample into 20 equal-sized groups based on the ventiles of the potential measure, and
plot the mean of the dependent variable against the mean of potential in each bin. Finally, we add back the mean
quality to make the scale easier to interpret after residualizing. The sample is the full analysis sample.
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Table 2: The Effect of Potential on Investment and Competition

     Competition     
Number of 

structure authors
Number of 

paper authors
Log number of deposits 

within two years
Dependent variable (1) (2) (3)

Panel A. Without complexity controls
Potential 0.008*** 0.031*** 0.009***

(0.002) (0.003) (0.000)

R-squared 0.023 0.063 0.050

Panel B. With complexity controls
Potential 0.007*** 0.033*** 0.009***

(0.002) (0.003) (0.000)

R-squared 0.026 0.065 0.081

Mean of dependent variable 4.615 6.896 0.655
Observations 17,688 14,680 17,688

*p<0.1, **p<0.05, ***p<0.01.

Notes: This table shows the relationship between investment / competition and potential, testing Proposition
4 of the model and estimating regression equation (12) in the text. The level of observation is a structure-paper 
pair. Potential is measured as the predicted three-year citation percentile, following the LASSO prediction
method described in the text. Complexity controls include molecular weight, residue count, and atom site count 
and their squares. All regressions control for deposition year. The number of observations corresponds to the
number of non-structural genomics structures in the analysis sample. The sample in column (2) is smaller
because some structures don't have an associated publication. Heteroskedasticity-robust standard errors are in
parentheses.

                  Investment                 
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Table 3: The Effect of Potential on Maturation and Quality

 Maturation 

Years
Std. 

resolution
Std.

R-free
Std. Rama. 

outliers
Std. quality 

index
Dependent variable (1) (2) (3) (4) (5)

Panel A. Without complexity controls
Potential -0.005*** -0.021*** -0.019*** -0.012*** -0.021***

(0.001) (0.001) (0.001) (0.001) (0.001)

R-squared 0.016 0.048 0.077 0.057 0.065

Panel B. With complexity controls
Potential -0.005*** -0.018*** -0.019*** -0.009*** -0.019***

(0.001) (0.001) (0.001) (0.001) (0.001)

R-squared 0.018 0.281 0.162 0.098 0.215

Mean of dependent variable 1.759 -0.060 -0.052 -0.048 -0.065
Observations 15,982 17,688 17,688 17,688 17,688

*p<0.1, **p<0.05, ***p<0.01.

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
2 0 0 0 0

Notes: This table shows the relationship between maturation/ quality and potential, testing Proposition 5 of the
model and estimating regression equation (12) in the text. The level of observation is a structure-paper pair. Potential
is measured as the predicted three-year citation percentile, following the LASSO prediction method described in the
text. Complexity controls include molecular weight, residue count, and atom site count and their squares. All
regressions control for deposition year. The number of observations corresponds to the number of non-structural
genomics structures in the analysis sample. The number of observations in column (1) is lower because maturation is
missing for a subset of observations. The mean of the standardized quality variables is not zero because we exclude SG
structures which are part of the standardization sample. Heteroskedasticity-robust standard errors are in parentheses.

                     Quality                         
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Table 5: The Effect of Potential on Maturation and Quality, by Structural Genomics Status

  Maturation  

Years
Std. 

resolution
Std.

R-free
Std. Rama. 

outliers
Std. quality 

index
Dependent variable (1) (2) (3) (4) (5)

Panel A. Without complexity controls
Potential 0.006*** -0.007*** -0.010*** -0.004*** -0.009***

(0.001) (0.001) (0.001) (0.001) (0.001)
Non-structural genomics 1.491*** 0.368*** 0.194*** 0.107** 0.273***

(0.081) (0.053) (0.056) (0.045) (0.052)
Potential * Non-structural genomics -0.011*** -0.013*** -0.009*** -0.008*** -0.012***

(0.002) (0.001) (0.001) (0.001) (0.001)

R-squared 0.085 0.056 0.086 0.065 0.080

Panel B. With complexity controls
Potential 0.006*** -0.006*** -0.009*** -0.003*** -0.007***

(0.001) (0.001) (0.001) (0.001) (0.001)
Non-structural genomics 1.503*** 0.343*** 0.213*** 0.063 0.253***

(0.081) (0.048) (0.054) (0.044) (0.048)
Potential * Non-structural genomics -0.012*** -0.012*** -0.009*** -0.006*** -0.011***

(0.002) (0.001) (0.001) (0.001) (0.001)

R-squared 0.087 0.274 0.171 0.102 0.221

Mean of dependent variable 1.526 0.000 0.000 0.000 0.000
Observations 20,164 21,951 21,951 21,951 21,951

*p<0.1, **p<0.05, ***p<0.01.

0 0 0 0 0
0 0 0 0 0

                       Quality                         

Notes: This table shows the relationship between maturation / quality and potential, interacted with structural
genomics status, estimating equation (13) in the text. The regressions include interactions between potential and an
indicator for whether the structure was deposited by a non-structural genomics group. The level of observation is a
structure-paper pair. Potential is measured as the predicted three-year citation percentile, following the LASSO
prediction method described in the text. Structural genomics deposits are defined as described in the text. Complexity
controls include molecular weight, residue count, and atom site count and their squares. All regressions control for
deposition year. The number of observations corresponds to the number of structures in the analysis sample. The
number of observations in column (1) is lower because maturation is missing for a subset of observations.
Heteroskedasticity-robust standard errors are in parentheses.
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Table 6: The Effect of Competition on Maturation and Quality

 Maturation 

Years
Std. 

resolution
Std.

R-free
Std. Rama. 

outliers
Std. quality 

index
Dependent variable (1) (2) (3) (4) (5)

Panel A. Ordinary least squares
Competition -0.150*** -0.053*** -0.014 -0.053*** -0.049***

(0.032) (0.016) (0.016) (0.020) (0.017)
Complexity controls? Y Y Y Y Y

Panel B. Two-stage least squares
Competition -0.610*** -2.112*** -2.146*** -1.082*** -2.181***

(0.167) (0.122) (0.125) (0.112) (0.127)
Complexity controls? Y Y Y Y Y
First-stage F statistic 508.5 575.8 575.8 575.8 575.8

Mean of dependent variable 1.76 -0.06 -0.05 -0.05 -0.07
Observations 15,982 17,688 17,688 17,688 17,688

*p<0.1, **p<0.05, ***p<0.01.

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

-1 -2 -2 -1 -2
0 0 0 0 0
0 0 0 0 0

509 576 576 576 576
2 0 0 0 0

15982 17688 17688 17688 17688

.                      Quality                        .

Notes: This table shows the relationship between maturation / quality and competition, testing
Proposition 3 of the model. Panel A presents the results from an OLS regression, following equation
(14) in the text. Panel B presents the results from a 2SLS regression, where competition is
instrumented with potential, following equations (12) and (15) in the text. The level of observation is a
structure-paper pair. Competition is measured as the number of deposits within a 100 percent
similarity cluster within two years of the first deposit. Complexity controls include molecular weight,
residue count, and atom site count and their squares. All regressions control for deposition year. The
number of observations corresponds to the number of non-SG structures in the analysis sample. In
column (1), we report fewer observations due to missing data in the maturation variable. The mean of
the standardized quality variables is not zero because we exclude SG structures which are part of the
standardization sample. Heteroskedasticity-robust standard errors are in parentheses.
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A Theory Appendix

A.1 Proofs of Propositions

Proof of Proposition 1.

First, we will expand on how we derive the first-order condition for mC∗
i (Equation 7). Taking the

derivative of Equation 6 with respect to mi and setting it equal to zero yields:

Q′(mC∗
i )

Q(mC∗
i )

= r −
∂π
dmi

(θ − θ)
π(mi,mj)θ + (1− π(mi,mj))θ

. (26)

Next, we note that π(mi,mj) = (1 − g) + g(1
2 +

mj−mi
2∆ ) and therefore ∂π

∂mi
= − g

2∆ if mi is close
enough to mj . We will assume this is the case for the moment, and plugging these values into
Equation 26 above yields Equation 7 in the text. However, if mi is much larger than mj (i.e., if
mi > mj + ∆), then ∂π

∂mi
= 0 and Equation 26 collapses to the no-competition case, i.e., Equation

4. We will return to this caveat, but for now we will assume mi is close to mj .
Equation 7 implicitly defines mC∗

i (mj) as a function of mj and parameters. If we can show that

(i) mC∗
i (0) > 0 and (ii) dmC

∗
i

dmj
∈ (0, 1), then we will know that there is a unique and symmetric pure

strategy Nash equilibrium, because mC∗
i (mj) and mC∗

j (mi) will only cross the mi = mj line once.

Figure A.1: Maturation Best Response Functions

To show (i), plug mj = 0 into Equation 7. This results in an equation that implicitly defines a
unique mC∗

i (0) > 0. To show (ii), we can totally differentiate equation 7 with respect to mj . For
notational ease, define ζ ≡ ∆

(
2θ−g(θ−θ)
g(θ−θ)

)
, and note that ζ > 0. Gathering terms and rearranging,
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we have that

dmC∗
i

dmj
=


(
−Q(mC∗

i )Q′′(mC∗
i ) +Q′(mC∗

i )2

Q(mC∗
i )2

)(
ζ +mj −mC∗

i

)2

︸ ︷︷ ︸
>0

+1


−1

∈ (0, 1). (27)

Next, we confirm that the second-order conditions hold. Differentiating the objective function
(Equation 6) twice with respect to mi and evaluating at mi = mj = mC∗ yields

Pe−rmi
[
Q′′(mC∗)−Q′(mC∗)

(
r +

1

ζ

)]
< 0. (28)

Therefore, mC∗
i = mC∗

j = mC∗ is a local optimum. Plugging mC∗ in for both mi and mj (and
assuming that Ii = Ij = IC

∗) in Equation 7 yields the expression in Proposition 1.
However, as a final check, we need to confirm that this is also a global optimum. Note that

Equation 8 tells us that as ∆ → 0, mC∗
i → 0. This will yield a payoff of zero for researcher i.

This cannot be researcher i’s best response, because there is always a 1 − g probability that her
competitor did not enter. Therefore, she would be better off selecting mi = mNC∗ and hoping that
her competitor fails to enter the project. To map this intuition to the math, note that we are now
considering a case where mi > mj + ∆, and so we the relevant first-order condition is now Equation
4.

More generally, in order to ensure that mC∗
i = mC∗

j = mC∗ is a global optimum we need the
payoff from playing mi = mC∗ to be larger than the payoff to playing mi = mNC∗ :

e−rm
C∗
PQ(mC∗)

[
(1− g

2
)θ +

g

2
θ
]
> e−rm

NC
i PQ(mNC∗

i )
(
(1− g) θ + gθ

)
. (29)

Because mC∗ is increasing in ∆, this defines a lower bound on ∆ such that this equation will hold.
Therefore, mC∗

i = mC∗
j = mC∗ is a symmetric pure strategy Nash equilibrium as long as ∆ is

sufficiently large. Moreover, this is the only possible pure strategy Nash equilibrium. To see this,
note that if |mi −mj | < ∆, then the first-order condition in Equation 7 applies and we have the
equilibrium defined by mC∗

i = mC∗
j = mC∗ . Alternatively, if |mi −mj | ≥ ∆, then the first-order

condition defined by Equation 4 applies. But this implies that m∗i = m∗j = mNC∗ , which violates
the assumption that |mi−mj | ≥ ∆. Therefore, if ∆ is below some threshold, the Nash equilibrium
must be mixed. We will focus on the pure strategy case throughout the remainder of the paper.

Proof of Proposition 2.

Equation 10 implicitly defines IC∗i (Ij) as a function of Ij , mC∗
i (which depends on Ij), and pa-

rameters. If we can show that (i) IC∗i (0) > 0 and (ii) dIC
∗

i
dIj

< 0 then we will know that there is a
unique and symmetric pure strategy Nash equilibrium, because IC∗i (Ij) and IC∗j (Ii) will only cross
the Ii = Ij line once.
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Figure A.2: Investment Best Response Functions

To show (i), imagine that j invests zero. Then i should surely invest some positive amount, be-
cause the marginal return will be be proportional to g′(Ii). Due to the Inada conditions assumption
on g(·), g′(Ii) will be quite large for small values of Ii. To show (ii), we can totally differentiate
Equation 10 with respect to Ij . Gathering terms and rearranging, we have that

dIC
∗

i

dIj
=

e−rm
C∗
i P

[(
rQ(mC∗

i )−Q′(mC∗
i )
) dmC∗i

dIj
+Q(mC∗

i )g′(Ij)(θ − θ)
]

g′′(Ij)
[
e−rm

C∗
i PQ(mC∗

i )
(
θ − 1

2g(Ij)(θ − θ)
)]2 < 0 (30)

where we can sign this expression by noting that rQ(mC∗
i ) − Q′(mC∗

i ) < 0 (due to Equation 1)

and dmC
∗

i
dIj

< 0 and applying assumptions about the function g(I). Therefore, IC∗i = IC
∗

j = IC
∗

is a unique, pure strategy Nash equilibrium. Plugging in IC∗ for both Ii and Ij , and plugging in
mC∗ for mi and mj yields the expression in Proposition 2. This also confirms our assumption that
Ii = Ij = IC

∗ in Proposition 1.

Proof of Proposition 3.

Looking at Equation 7, the left hand side is decreasing in mC∗ . Looking at the right hand side,
we see it is increasing in g(IC

∗
). For the equality to hold as g(IC

∗
) increases, it must be the

case that mC∗ decreases, i.e., that dmC
∗

dg(IC∗ )
< 0. Because Q(m) is increasing, this also implies that

dQ(mC
∗

)

dg(IC∗ )
< 0.
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Proof of Proposition 4.

Suppose this were not the case. In particular, consider two projects with P1 and P2, and further
suppose that P1 > P2. If Proposition 4 is not true, investment for project 1 would be lower than
for project 2, i.e., IC∗,1 ≤ IC

∗,2. From Proposition 3, we then know that then mC∗,1 > mC∗,2 and
Q(mC∗,1) > Q(mC∗,2). The expected PDV of successfully entering an arbitrary project is given by

e−rm
C∗
PQ(mC∗)

[
θ − 1

2
g(Ij)(θ − θ)

]
. (31)

It is clear that this value is unambiguously higher for project 1 than for project 2. Therefore, a
researcher would want to invest more to enter project 1 than project 2 (see Equation 2 to confirm
this intuition). Therefore, we have a contradiction. This implies that IC∗,1 > IC

∗,2 for any arbitrary
pair of projects where P1 > P2. This implies that dg(IC

∗
)

dP > 0.

Proof of Proposition 5.

See main text.

Proof of Lemma 1.

Let ∆Q = Q(mIMP ∗) − Q(mC∗) denote the realized quality improvement. The derivative of the
present discounted value of a project improvement (Equation 16) with respect to project potential
P is given by:

− re−rmIMP∗ dmIMP ∗

dP
P∆Q+ e−rm

IMP∗
∆Q+ e−rm

IMP∗
P
d∆Q

dP
. (32)

The first term represents the change in discounting due to the effect of P onmIMP ∗ , the second term
represents the direct effect of shifting P , and the final term represents the change in the quality
improvement, via the effect of P on mIMP ∗ and mC∗ . Totally differentiating Equation 18 with
respect to P and rearranging yields:

dmIMP ∗

dP
=

rQ′(mC∗)dm
C∗

dP

rQ′(mIMP ∗)−Q′′(mIMP ∗)
< 0 (33)

where we can sign the expression by noting that dmC
∗

dP is negative, as shown in Proposition 5. Next,
we can re-write Equation 18 as

∆Q =
Q′(mIMP ∗)

r
.

Taking the derivative of this equation with respect to P yields

d∆Q

dP
=
Q′′(mIMP ∗)

r
· dm

IMP ∗

dP
> 0 (34)
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due to the concavity of Q(·). Together, these two derivatives allow us to unambiguously show that
the expression in Equation 32 is positive.

Proof of Proposition 6.

See main text.

Proof of Proposition 7.

Taking the derivative of Equation 21 with respect to P yields

dQmax
dP

=
dQ(mC∗)

dP
+ g′(IIMP ∗)

dIIMP ∗

dP
∆Q+ g(IIMP ∗)

d∆Q

dP
. (35)

Because we have already shown that dIIMP∗

dP > 0 (Proposition 6) and d∆Q
dP > 0 (see the proof of

Lemma 1), we know that dQmax
dP > dQ(mC

∗
)

dP .

Proof of Lemma 2.

Plugging θ = θ = V
2 into Equation 7, we recover Equation 4, which defines both the no-competition

maturation period and the social planner’s optimal maturation period. Plugging θ = θ = V
2 and

m = mSP ∗ into Equation 10, we have

g′(IC
∗
) =

1

e−rmSP
∗
PQ(mSP ∗)(V/2)

.

Comparing this to Equation 25, we see that as long as k is sufficiently large (in this case, as long as
k > V/2

(1−g(ISP∗ ))
), then ISP ∗ > IC

∗ .

Proof of Proposition 8.

We start by writing out dmC
∗

dθ
and dIC

∗

dθ
using the chain rule. We then apply the implicit function

theorem to Equations 1 and 2 (after substituting θ = V −θ in both equations) to sign all the partial
derivatives. This leaves us with the following:

dmC∗

dθ
=
∂mC∗

∂θ︸ ︷︷ ︸
<0

+
∂mC∗

∂IC∗︸ ︷︷ ︸
≤0

·dI
C∗

dθ

and
dIC

∗

dθ
=
∂IC

∗

∂θ︸ ︷︷ ︸
>0

+
∂IC

∗

∂mC∗︸ ︷︷ ︸
≥0

·dm
C∗

dθ
.

We can immediately note that dm
C∗

dθ
< 0 (to see this, assume dmC

∗

dθ
≥ 0 and arrive at a contradiction).

The sign of dI
C∗

dθ
is ambiguous, and depends on whether the direct effect (∂I

C∗

∂θ
) dominates or whether
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the indirect effect via m ( ∂I
C∗

∂mC∗
· dmC

∗

dθ
) dominates.

At this point, it is helpful to construct an example. Suppose we have the following parameter
values and expressions for Q(m) and g(I):

• r = 0.1, P = 4, ∆ = 2, k = 2, V = 1

• Q(m) = 1− e−m

• g(I) = 1− e−1.2I

Then, we can numerically compute dmC
∗

dθ
and dIC

∗

dθ
. We show these below. This results in dmC

∗

dθ
< 0

and dIC
∗

dθ
> 0.

Figure A.3: Numerically calculated dmC
∗

dθ
and dIC

∗

dθ

In this particular example, this means that as we increase θ from V
2 = 1

2 toward 1, mC∗ falls from
the socially optimal value, but IC∗ increases toward the socially optimal value. In this example,
this results in an optimal choice of θ∗ that is between V

2 = 1
2 and 1, as shown in the figure below.

68



Figure A.4: Welfare as a function of θ

Proof of Proposition 9.

As long as θ = θ, then mC∗ = mSP ∗ , as shown in the proof of Proposition 8. To achieve IC∗ = ISP
∗ ,

we plug θ = θ = V
2 and m = mSP ∗ into Equation 2, and equate this with Equation 25:

1

e−rmSP
∗
PQ(mSP ∗)(V/2)

=
1

e−rmSP
∗
kPQ(mSP ∗)(1− g(ISP ∗))

.

Here, we treat V as a free variable. Re-arranging, we arrive at

V = 2k(1− g(ISP
∗
)).

So we can recover the first best if θ = θ = k(1−g(ISP
∗
)). Figure A.5 below helps illustrate that θ =

θ = V
2 is increasing in k. Suppose k = k1. To achieve IC

∗
= ISP

∗ , we need 1

e−rmSP
∗
k1PQ(mSP∗ )(1−g(I))

to intersect both g′(I) and 1

e−rmSP
∗
PQ(mSP∗ )(V1/2)

, which occurs at I = ISP1 in Figure A.5. However,

if we increase k from k1 to k2, then 1

e−rmSP
∗
k2PQ(mSP∗ )(1−g(I))

shifts down (shown by a dotted line).

To maintain this intersection, then 1

e−rmSP
∗
PQ(mSP∗ )(V2/2)

must also shift down (again shown by a

dotted line), which implies that V2 > V1.
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Figure A.5: Achieving Optimal Investment

B Data Appendix

B.1 Description of the Protein Data Bank Data

The first iteration of the Protein Data Bank (PDB) started in 1971. Today, a non-profit organi-
zation called the World Wide Protein Data Bank (wwPDB) curates and manages the database.
The wwPDB is a collaboration of four existing data banks from around the world: Research Col-
laboratory for Structural Bioinformatics Protein Database (RCSB PDB), Protein Data Bank in
Europe (PDBe), Protein Data Bank Japan (PDBj), and Biological Magnetic Resonance Data Bank
(BMRB). The data has been standardized and currently represents the universe of discoveries de-
posited in each of these archives. All new discoveries deposited to any database are transferred to,
processed, standardized, and archived by the RCSB (Berman et al. 2006) at Rutgers University.
Details about the PDB data can be found on their website.36

We access the data directly from the RCSB Custom Report Web Service.37 The data extract
used in this study was downloaded on May 22, 2018. We use the following field reports and variables:

• Structure Summary: structure ID, structure title, structure authors, deposit date, release
date, experimental technique, classification, macromolecule type, molecular weight, residue
count, and atom site count.

• Citation: PubMed ID, publication year, and journal name.
36http://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/introduction
37https://www.rcsb.org/pdb/results/reportField.do
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• Cluster Entity: entity ID, chain ID, UniPROT accession number, taxonomy, gene name,
BLAST sequence 100 percent similarity clusters.

• Data Collection Details: collection date (the self-reported date the scientists generated diffrac-
tion data at a major synchrotron or in a home lab).

• Refinement Details: r-free and refinement resolution.

Data about Ramachandran outliers, one of the quality metrics, was not available through RCSB
custom reports. Instead, we accessed validation reports data from the PDBe REST API38 provided
by the European Bioinformatics Institute (EMBL-EPI). Data for this study was downloaded on
October 25, 2019 and merged using the standard PDB structure identifiers.

Many of the variables we use in the analysis, such as predicted citations, are calculated at
the paper level. However 20 percent of PDB-linked papers have more than one structure, with
an average of 1.5 structures per paper. Because each linked structure has a unique set of quality
metrics, it is difficult to ascribe paper-level characteristics to any one of the individual structures.
Our main analysis sample therefore drops all structures linked to multi-structure papers. Since
about 30% of deposits are never published, we make a similar restriction for groups of structure
deposits that appear to have been part of the same unpublished project. We group unpublished
structures into the same “project” if the deposits have the same first and last PDB structure author
and share the same release date. Unpublished projects with more than one structure are dropped
to mirror the single-structure paper restriction.

A further complication of the PDB data is that cluster groupings are defined at a level of
granularity that is smaller than the structure or article level. Proteins are composed of “chains”
of amino acids, and large proteins are often characterized in the PDB as a set of distinct chains.
Further, chains of amino acids are often grouped as “entities”, and many proteins are combinations
of two or more entities. This is relevant to our sample construction because the BLAST similarity
algorithm clusters at the entity level rather than the protein level. In particular, our main analysis
sample includes only “priority” structure deposits, meaning that the PDB entry was the first to
produce a structure for a given entity. In practice, we keep any structure that has at least one
entity that is the first deposit among all other entities that are 100 percent similar according to
the BLAST algorithm. This means that in some cases, only one part of the structure is truly a
novel discovery, but these deposits still represent important contributions for which scientists often
compete to publish first.

Some relevant protein characteristics are assigned at the entity, rather than the structure level.
For example, we use gene-protein linkages as an input to the predicted citation LASSO model
described in Section 4.1. The PDB data assigns gene linkages at the entity level, meaning some
proteins (9.4 percent) have multiple gene linkages. To simplify the citation prediction model, we
assign a single gene-linkage to the full protein by taking the modal gene name amongst the protein
entities and breaking ties alphabetically. Similarly, some structures are complexes of entities from

38https://www.ebi.ac.uk/pdbe/api/doc/validation.html
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different organisms (e.g. a human protein bound to a virus), so we assign the modal taxonomy to
the 5.9 percent of proteins with multiple taxonomies.

B.2 Description of the Web of Science Data

Citation data is sourced from the Web of Science produced by Clarivate Analytics and accessed
through a license with Stanford University. Our version of the dataset includes digitized academic
references through the end of 2018 and is linked to the PDB data using PubMed identifiers. The
citation data is restricted to citations between papers linked to PubMed IDs,39 and self-citations
are excluded. Citations are aggregated for each cited paper by publication year of the citing paper.
When we report three-year citations, it represents the total number of citations in the publishing
year and the subsequent three calendar years.

B.3 Description of the UniPROT Knowledgebase Data

The UniPROT Knowledgebase is a comprehensive, curated database of the biological and functional
details of most known proteins. Importantly for our purposes, each protein entry contains a linkage
to PDB identifiers of associated structure discoveries. It also contains an annotated bibliography
of all associated scientific articles, both structure papers and others, such as articles describing
protein function. We count the number of PubMed-linked articles that were published before the
first structure discovery as a measure of “potential” or ex-ante demand for a structure model. We
only include papers that had been manually reviewed (Swiss-Prot) and exclude those that had only
been annotated automatically (TrEMBL). Raw data was accessed on August 26, 2018.40

39Because structural biology falls squarely within the life sciences, restricting to citations with PubMed IDs is does
not have a large effect on citation counts.

40Downloaded from ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.xml.gz
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C Appendix Figures and Tables

Figure C.1: Validation Report for PDB ID 4CMP — Crystal Structure of S. pyogenes Cas9

Notes: This figure presents some snapshots from the PDB x-ray structure validation report for PDB ID 4CMP. The
“Source” column describes the software package (if applicable) that calculated the quality measure / property.
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Figure C.2: Difference between Number of Structure Authors versus Number of Paper Authors

Notes: This figure the difference between the number of paper authors and the number of structure authors. The
difference variable has been winsorized at the 1st and 99th percentile. The sample is the full analysis sample, excluding
unpublished papers (which lack a paper author count).
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Figure C.3: Predicting Single-Structure Projects

Notes: This figure assesses how well we predict whether a structure will be the only structure in a paper. Panel A
looks at the set of structures we predict will fall in single-structure papers (“single structure projects”). About 70
percent of these are indeed single-structure papers, implying a 30 percent false positive (Type I) error rate. Panel
B looks at the set of structures that actually fall in single-structure papers. We predict that 95 percent of these are
“single structure projects,” implying a 5 percent false negative (Type II) error rate.
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Figure C.4: Distributions of Key Outcome Variables

Notes: This figure provides histograms of the distributions of our key outcome variables. All variables have winsorized
at the 99.9th percentile to make the figures easier to read. The sample is the full analysis sample.

Table C.1: Correlation Between Quality Outcomes

Resolution R-free Rama. Outliers
Resolution 1.00
R-free 0.66 1.00
Rama. Outliers 0.41 0.43 1.00
Notes: This table shows the correlation between our three
quality outcomes. A given cell shows the correlation between the
two variables on the x and y -axis.
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Table C.2: LASSO-Selected Covariates
LASSO-selected variables Post-LASSO OLS coefficients LASSO-selected variables Post-LASSO OLS coefficients

Molecule classification Other
Isomerase -12.45 UniProt citations (prior to PDB) 0.085
Lyase -11.87
Other 7.43 Publication Year
Oxioreductase -5.33 1996 25.62
Oxioreductase (CHOH(D)-NAD+(A)) -2.40 1997 20.89
RNA binding protein / RNA 19.07 1998 18.15
Serine esterase -7.98 1999 17.39
Transferase -5.03 2000 15.28
Transport Protein 11.10 2001 13.31
Unknown function -15.81 2002 9.58

2003 8.62
Macromolecule Type 2015 -3.82
Protein-RNA complex 9.77

Constant 46.93
Taxonomy R-squared 0.17
Homo sapiens 7.46 Observations 13,284
Mycobacterium avium 1.50
Sapporo virus 1.99

Gene 
BETVIA 1.68
BSHA 7.01
CUL2 5.41
DESI1 1.90
INAD 1.08
ISIB -13.47
LINA 13.51
MAP3K5 7.08
Missing -10.61
MOXF 15.46
NAGZ 1.99
NUTF2 1.23
Other -3.23
PEPT -7.76
RRM2 -0.47
THYX 6.93
TPSAB1 -8.40
VP40 -0.21
YWLE 1.90
Notes: This table presents results from a LASSO regression of cumulative three-year citations (excluding self-citations, transformed to
percentiles) on observable protein characteristics. Estimated coefficients are from a post-LASSO OLS regression on the selected characteristics.
The coefficients span two sets of columns for readability.

77



Table C.3: The Effect of Potential on Alternative Competition Measures

Log number of deposits 
within one year

Log number of deposits 
(ever) Priority race

Dependent variable (1) (2) (3)

Panel A. Without complexity controls
Potential 0.006*** 0.037*** 0.001***

(0.000) (0.001) (0.000)

R-squared 0.036 0.136 0.009

Panel B. With complexity controls
Potential 0.006*** 0.035*** 0.001***

(0.000) (0.001) (0.000)

R-squared 0.064 0.173 0.010

Mean of dependent variable 0.143 0.655 0.072
Observations 17,688 17,688 17,688

*p<0.1, **p<0.05, ***p<0.01.

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0

17688 17688 17688

Notes: This table shows the relationship between additional mesasures of competition and potential, testing Proposition
4 of the model and estimating regression equation (12) in the text. The level of observation is a structure-paper pair.
Potential is measured as the predicted three-year citation percentile, following the LASSO prediction method described
in the text. Complexity controls include molecular weight, residue count, and atom site count and their squares. All
regressions control for deposition year. The number of observations corresponds to the number of non-structural
genomics structures in the analysis sample. Heteroskedasticity-robust standard errors are in parentheses.
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